
Electronics – September 11, 2015 Prof. A. Spinelli
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Problem 1
The scheme in the left figure shows an amplifier with minimum phase shift. OAs have A0 = 105 and
GBWP = 1 MHz; component values are R1 = R2 = 10 kΩ, k = 9.

1. Compute the closed-loop gain of the stage (ideal case).

2. Compute the loop gain for OA1 when OA2 is ideal. What changes if we consider the finite gain of
OA2?

3. Compute the total output rms noise when the input noise sources of the OAs are
√

SV = 10 nV/
√
Hz

and
√

SI = 5 pA/
√
Hz (neglect resistor noise).

4. OA1 has an input resistance of 100 kΩ: compute the input resistance of the stage considering OA2 as
ideal.

Problem 2
A very-low frequency signal of amplitude A ≈ 10 µV is modulated at frequency fR before being preamplified
and sent to a lock-in amplifier (see figure on the right). The INA has an input voltage noise SV = SWN+K/f
with K = 10−10 V2 and noise corner frequency of 500 Hz, an input offset voltage VOS = 1 mV and a
bandwidth of 5 kHz.

1. Find a set of LIA parameters that provides S/N = 1.

2. The LIA reference input is cos(ωRt + φ)), where φ is a low-frequency term. Compute the mean and
rms output values when φ is uniformly distributed in an interval ±φM .

3. The power line generates strong interferences at all harmonics of 50 Hz, superimposed onto the mod-
ulated signal. Is the solution computed in #2.1 still viable? If not, find a new set of LIA parameters
that provides an attenuation of a factor of 1000 (at least) of the harmonics.

4. A square wave is used for demodulation, without a selective filter. With reference to the previous
solution, discuss the choice of fR.

Question
Describe the differences between analog and digital LIAs.

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by September 16th Mark registration: Friday, September 18th



Solution

Problem 1

1.1
Considering that the input terminals of the OAs are kept at the same voltage, we immediately get:

Vo

Vi
=

R1 + kR1

R1
= k + 1.

1.2
If OA2 were ideal, the transfer between its non-inverting and inverting input would be 1 and the resulting
loop gain would be:

Gloop = −A1(s)
1

k + 1
.

If we now label G(s) the transfer function between the non-inverting and the inverting input of OA2, the
actual loop gain becomes

Gloop = −A1(s)
1

k + 1
G(s).

Now, looking at the AO2 stage, we see a standard non-inverting amplifier with the only difference that the
output is taken at the voltage divider rather than at the OA output (Fig. 1, left). We can then apply the
feedback theory to this stage, obtaining:

G(s) =
Gopen

1−Gloop
=

A2(s)
k+1

1 + A2(s)
k+1

≈ 1

1 + k+1
A0

sτ
.

The resulting loop gain is shown in Fig. 1 (right), where it can be seen that OA2 introduces a second pole
falling exactly at 100 kHz, the zero-dB crossing frequency of Gloop (i.e., giving a phase margin of 45◦).

1.3
Elementary calculations lead to the output PSD

SV o = (SV1
+ SV2

)(k + 1)2 + S+
I2
(kR1)

2 = 2× 10−14 + 2× 10−13 = 2.2× 10−13 V2/Hz.

The zero-dB frequency of the loop gain, previously computed, is 100 kHz, leading to:

V 2
o = 2.2× 10−13 π

2
105 ≈ (0.19 mV)2.

1.4
In the ideal case we have Zi = ∞, i.e. we need to multiply the open-loop value, Zopen by the factor 1−Gloop.
Now, if OA2 is ideal we have simply

Zopen = Ri,

because OA2 keeps its inverting node at ground potential when the loop is open and V +(OA2) = 0. From
the expression of the loop gain already computed, we obtain:

Zi = Zopen(1−Gloop) = Ri

(

1 +
A1(s)

k + 1

)

,

which is equal to 1 GΩ at low frequencies.
As a reference, we now address the (non-straightforward) case of finite gain of OA2. Referring again to the
block shown in Fig. 1 (left), it is easy to see that its output impedance is given by:

Zout =
R2 ‖ kR2

1 + A2
1 + k

,



+

kR2

R2

OA2

Frequency [Hz]
10 0 10 2 10 4 10 6

M
ag

ni
tu

de
 [d

b]

-20

0

20

40

60

80

100

Figure 1: Left: Scheme of the OA2 block used in calculations of Gloop (and later Zin); Right: Bode magnitude
diagram of the loop gain when OA2 is taken into account.

so that the correct expression for Zi becomes

Zi = (Ri + Zout)(1−G′

loop),

where G′

loop is the new loop gain, accounting for the non-unity transfer through the OA2 stage. Such a
transfer is easily given by:

V −(OA2)

V +(OA2)
=

A2

k+1

1 + A2

k+1

,

finally leading to:

G′

loop =
A1

k + 1

A2

k+1

1 + A2

k+1

.

With some rearrangement, the final expression becomes:

Zi = Ri

(

1 +
A1

k + 1

A2

k + 1 +A2

)

+R2
k

k + 1 +A2
.

Problem 2

2.1
We note that we do not have a specific limit on the signal bandwidth, so that we can (at least, in principle)
select whatever value we would like. A smart approach could be to select fR > fnc = 500 Hz (say, 1 kHz) to
minimize noise pick-up and then find BWn. From the expression for the output S/N of a LIA we would get:

S

N
=

A
√

2S(fR)BWn

= 1 ⇒ BWn = A2 fnc
2K

= 250 Hz.

Note that the factor 2 in the expression of S/N comes from the amplifier noise, which is usually a unilateral

density. Besides, it is worth pointing out that fR lies within the bandwidth of the INA, which is not limiting
the performances (its DC offset is also unimportant, being modulated at fR).



2.2
The output signal of the mixer is

VM = A cos(ωRt) cos(ωRt+ φ) =
A

2
cosφ(t) +

A

2
cos(2ωRt+ φ(t)),

which becomes
A

2
cosφ(t) at the output of the LPF, because the second term is filtered. If we assume that

the output filter does not affect the (low frequency) random process cosφ(t), we then have for the average
value:

Vo =
A

2
cosφ =

A

2φM

∫ φM

0
cosφ dφ =

A

2

sinφM

φM
.

The mean square value is instead:

V 2
o =

A2

4
cos2 φ =

A2

4φM

∫ φM

0
cos2 φ dφ =

A2

4

(

1

2
+

sin 2φM

4φM

)

.

so that
√

V 2
o − Vo

2
=

A

2

√

1

2
+

sin 2φM

4φM
− sin2 φM

φ2
M

2.3
Since fR = 1 kHz is a multiple of the mains frequency, it will demodulate the 20th harmonics back to DC,
degrading S/N . First of all, we need then to move fR away from such frequencies; then, we’ll have to reduce
the filter bandwidth to reject the nearby interfering signals.
As harmonics are uniformly spaced by 50 Hz, we could simply set fR = 975 Hz. The nearest harmonics are
now at 950 and 1000 Hz, and these are demodulated by the mixer down to fi = ±25 Hz, falling within the
bandwidth of the output filter; it is then clear that such a filter is no longer effective.
To get an attenuation of a factor of 60 dB at the interfering frequency fi we must have (single-pole filter):

1
√

1 + (2πfiτ)2
= 10−3 ⇒ τ ≈ 103

2πfi
= 6.4 s,

i.e., a pole frequency fp = 1/(2πτ) = 25 mHz. This is a straightforward result directly stemming from the
20 dB-per-decade attenuation of a single-pole filter.
We just carry out the calculations for the case of second-order filter (assuming two coincident real poles for
simplicity):

1

1 + (2πfiτ)2
= 10−3 ⇒ τ ≈ 103/2

2πfi
= 0.2 s,

i.e., a pole frequency fp = 1/(2πτ) = 0.8 Hz, much larger than before.

2.4
If a square wave is used at the mixer input, the LIA spectral response contains windows at the odd harmonics
of fR, which must not fall onto the harmonics of fi. In this case, it is easy to see that the requirement is
satisfied, so that no further changes are required.


