
Electronics – February 16, 2015 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is an amplifier working with single supply, i.e., biased between Vcc and ground.
OA has A0 = 104 and GBWP = 70 MHz; component values are R = 10 kΩ, R1 = 560 Ω, R2 = R3 = 280 Ω,
C = 1 mF, C3 = 560 pF. To simplify the calculations, approximate the behavior of C where necessary.

1. Compute the ideal and open-loop gain of the circuit and draw the Bode diagram of the losed-loop gain.

2. Verify the circuit stability and evaluate (even approximately) the maximum value of the OA input
differential capacitance granting a phase margin of 45◦. Discuss the employed approximations.

3. Compute the total output rms noise when the input noise sources of the OAs are
√

SV = 10 nV/
√
Hz,

√

SI = 1 pA/
√
Hz (neglect resistor noise).

4. Discuss the function of the capacitor C and resistors R. Can we get rid of them?

Problem 2
The system in the right figure is a multiplier (having gain of 1 V−1) followed by a single-pole filter. Consider
s1 = A1 cos(ωRt), s2 = A2 cos(ωRt) with fR = 200 Hz and Rn1n1

as shown in the topmost right figure with
τn = 2 ms and n2 = 4× 10−9 V2.

1. It is A1 ≈ A2 ≈ 10 µV and n2 = 0. Size the output filter bandwidth to achieve S/N = 1 (referred to
signal s1).

2. The system is used to measure the cross-correlation in 0 between s1 and s2. Compute the output S/N
knowing that n2 ìs a white noise with bilateral PSD λ = 10−14 V2/Hz, uncorrelated with n1 (neglect
the term n1n2 in the calculations). Comment on the result.

3. With reference to # 2.2, consider now the term n1n2 and repeat the calculation of S/N .

4. A delay T is inserted on the s2 branch, to measure the cross-correlation for different values of T . What
is the effect on the output noise?

Question
Describe compensation techniques for OAs under capacitive load.

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by February 18th Mark registration: Friday, February 20th



Solution

Problem 1

1.1
We have two signals at the input, Vi and Vcc, so we can use the superposition principle. Vcc is a DC signal,
all capacitors are open circuits and the transfer is equal to 1/2.
We now set Vcc to ground and turn on the input voltage, which is connected to a CR group. Note that the
value of C is very high, meaning that these elements will only come into play for very low frequencies, close
to DC. In fact, the high-pass filter introduces a zero in the origin and a pole at about 30 mHz, i.e., it can be
safely neglected for all frequencies of interest (except near DC). As far as the capacitor C in the feedback
loop is concerned, its pole is located at

fp =
1

2πCR2

≈ 0.6 Hz,

and it can be approximated with a short-circuit for all frequencies above this value. The stage gain now
becomes:

Gid = 1 +
R1

R2 ‖ (R3 + 1/sC3)
=

R1 +R2

R2

1 + sC3 (R3 +R1 ‖ R2)

1 + sC3R3

,

amounting to 3 at low frequencies and raising to 5 at high frequencies. Singularities are located at

fz =
1

2πC3(R3 +R1 ‖ R2)
≈ 609 kHz;

fp =
1

2πC3R3

≈ 1 MHz.

The open-loop gain is simply A(s), adding a pole to the ideal gain at a frequency of 70/5 = 14 MHz. Bode
diagrams (excluding singularities due to C) are reported in Fig. 1 (left).

1.2
Stability is straightforward from the Bode diagrams in Fig. 1, where Gloop is the difference (measured in dB)
between Gopen and Gid and crosses the 0dB axis at fc = 14 MHz with a slope of −20 dB/dec.
The maximum value of the input capacitance Ci can then be obtained by imposing that its pole be located
exactly at fc. Considering all others capacitors as short-circuited (we are well beyond any singularity due to
C3), we get:

fp =
1

2πCi(R1 ‖ R2 ‖ R3)
= fc ⇒ Ci =

1

2πfc(R1 ‖ R2 ‖ R3)
= 101.5 pF.

The corresponding loop gain is shown in Fig. 1 (right). Note that the poles of Ci and C3 are separated by
slightly more than a decade, so that a fairly good approximation is expected; exact calculations return in
fact a value of about 105 pF. If, however, we consider the real diagram rather than the asymptotic one, the
value rises to about 137 pF.

1.3
The PSD of the output noise, still for the frequency range in which we neglect C, is

SVo
= SV |Gid|2 + SIR

2
1.

We can now break down the fraction representing |Gid|2 as

|Gid|2 =
9

|1 + sCR3|2
+ 9

|sC3(R3 +R1 ‖ R2)|2
|1 + sC3R3|2

.

We now add the pole introduced by the OA at frequency fc to the second transfer, obtaining

V 2
o = 10−16

(

9 · π
2
6× 105 + 25(14× 106 − 6× 105)

π

2

)

+ 10−24 · (560)2 · 14× 106
π

2
≈ (0.23 mV)2,

largely dominated by the voltage noise of the OA.
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Figura 1: Left: Bode diagram of the ideal (blue), open-loop (green) and closed-loop (red) gain. Right: Bode
diagram of the loop gain for the case of Ci = 101.5 pF.

1.4
OS is powered by a single-supply, not a dual one as usually assumed. As a consequence, the output of the
circuit in absence of input signal cannot be zero, as this is the lower end of te dynamics, but has to be
at Vcc/2, in the middle! This function is actually accomplished by the two resistors R, that bring V + to
Vcc/2, plus the capacitor C in the feedback loop, that ensures that the DC gain is unity. We have then
Vo = V + = Vcc/2.
Now, note that the input signal is referred to ground, while V + has a DC bias, so we cannot simply connect
them. We need to decouple the DC component, which is achieved via the capacitor C. Since the resulting
CR filter behaves as a HPF, we pick a large value for C, so that signal is not affected (except for its DC
component).

Problem 2

2.1
The system is basically an LIA recovering a constant signal A1 buried into a noise n1 having bilateral PSD
(Fourier transform of the triangle):

Sn1(f) = n2τn sinc
2(πfτn).

The output signal to noise ratio and filter bandwidth are then given by

S

N
=

A1
√

4Sn1(fR)BWn

= 1 ⇒ BWn =
A2

1

4Sn1(fR)
≈ 5 Hz,

which means that the single-pole frequency will be placed at 10/π ≈ 3 Hz. The filter time constant is
TF ≈ 53 ms.

2.2
At the multiplier output we have

x(t) = s1s2 + s1n2 + s2n1 + n1n2,

where the first term represents the useful signal while the other three are noises. The signal at the LPF
input is then

s1(t)s2(t) = A1A2 cos
2(ωRt) =

A1A2

2
(1 + cos(2ωRt)).



The component at 2fR is filterred out, and the output signal becomes A1A2/2.
We now look at the noise. The two contributions s1n2 e s2n1 can be rewritten as s1(n1 + n2), which is just
the expression of a noise source modulated by a sinusoidal waveform, i.e., what is found in the classic LIA
filter. The output PSD becomes then:

Sy(f) =
A2

1

4
(Sn1(f − fR) + Sn2(f − fR) + Sn1(f + fR) + Sn2(f + fR))

and the rms value of the output noise is

n2
y = 2BWnSy(0) = A2

1BWn (Sn1(fR) + Sn2(fR)) = A2
1BWn

(

n2τn sinc
2(πfRτn) + λ

)

= (4.8× 10−6A1)
2.

From them, we compute the output S/N:

S

N
=

A2
1

9.6× 10−6A1

≈ 1.

Its value has not changed from the value in #2.1, except for small differences. In fact, the term that was
added to the PSD is more than two orders of magnitude smaller than the one originally present, and doesn’t
affect the result.

2.3
The autocorrelation of the term nx = n1n2 at the multiplier output is given by

Rnxnx
(t, τ) = nx(t)nx(t+ τ) =

∫ ∫

n1(t)n1(t+ τ)n2(t)n2(t+ τ)p(n1, n2, t, τ)dn1dn2 =
∫ ∫

n1(t)n1(t+ τ)n2(t)n2(t+ τ)p(n1, t, τ)p(n2, t, τ)dn1dn2 =
∫

n1(t)n1(t+ τ)p(n1, t, τ)dn1

∫

n2(t)n2(t+ τ)p(n2, t, τ)dn2 =

n1(t)n1(t+ τ) n2(t)n2(t+ τ) = Rn1n1
(τ)Rn2n2

(τ) = λRn1n1
(0)δ(τ).

This is a white noise with PSD λx = λn2 = 4×10−23 V2/Hz and output rms value 2λxBWn = (2×10−11 V)2,
completely negligible with respect to the previous contributions.

2.4
Noises are stationary and uncorrelated among themselves; adding a delay on either channel does not affect
the properties of the output noise. This is all the more true if we consider that we are actually computing
the average PSD of noises s1n2 and s2n1, which is obviously not affected by delays.
Of course, delays affect the output signal, reducing it (remember that maximum autocorrelation is achieved
for zero delay) and degrading S/N .


