
Electronics – July 23 2015 Prof. A. Spinelli
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Problem 1
The scheme in the left figure shows a 2nd order filter. OA has A0 = 104 and GBWP = 70 MHz; component
values are R1 = R2 = 8 kΩ, C1 = C2 = 20 pF.

1. Compute the closed-loop gain of the stage.

2. Verify the stability of the scheme.

3. The input noise PSDs of the OA are equal to 10 nV/
√
Hz and 1 pA/

√
Hz. Compute the low- and

high-frequency output noise PSD and find an approximate value for the total rms noise.

4. Sketch the step voltage response of the stage.

Problem 2
A signal approximately rectangular in shape, having amplitude A and duration T , is buried into a white
noise having bilateral spectral density λ.

1. A matched filter is used to detect the pulse. Find the optimal S/N ratio.

2. The signal is now made of a stream of rectangular pulses, each having amplitude of ±A and separated
by a wait time Tw (Fig. 2). Sketch the shape of the output signal and find the minimum value of Tw

that allows a proper detection of the pulses (i.e., without any error due to the previous ones).

3. The noise PSD is now λ+K/f2. Find the new expression of S/N for the previous filter and a suitable
whitening filter.

4. An optimum filter is used after the whitening stage just computed. What is now the minimum value
of Tw? Is the optimum filter solution convenient? Compute then the new value of the optimum S/N .

Question
Discuss the AC parameters of operational amplifiers.

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by July 28th Mark registration: Friday, July 31st



Solution

Problem 1

1.1
We label V1 the node between R2 and C1 and note that the output can easily be expressed as

Vo = −sC1R1V1

because the inner stage made up of the OA plus R1 and C1 works as a differentiator. To find V1 we then
write the KCL at node V1:

Vi − V1

R2

= sC1V1 + sC2(V1 − V0).

With simple manipulation we obtain:

Gid =
Vo

Vi
= − sC1R1

1 + s(C1 + C2)R2 + s2C1C2R1R2

= − sCR

(1 + sCR)2
,

i.e., a transfer function with a zero in the origin and two coincident poles at a frequency of 1 MHz. The ideal
gain is shown in Fig. 1 (left).

1.2
If we call V2 the voltage between R2 and C1, we can write:

V2 =
R2

R2 + 1/sC2 ‖ (R1 + 1/sC1)
Vs =

sCR(2 + sCR)

1 + 3sCR+ (sCR)2
Vs.

Considering now the R1 − C1 branch we have

V − = V2

sCR

1 + sCR
+ Vs

1

1 + sCR

which apparently returns a third order network. Since we have only two reactive elements, there must be a
pole-zero simplification (the numerator is actually a perfect cube). We eventually get

Gloop = −A(s)
(1 + sCR)2

1 + 3sCR+ (sCR)2
,

with two zeros at 1 MHz and two poles at 0.38 and 2.62 MHz. The singularities are so close that they do
not give any significant contribution to the phase margin. Note also that the loop gain coincides with −A(s)
outside this small frequency interval.
The conclusion could have been reached via a simplified argument: if we consider the capacitors beyond their
pole frequencies, their impedance is much lower than that of the corresponding resistances. In this range of
frequencies, therefore, C2 and C1 provide a low-impedance path from the OA output to its inverting input,
short-circuiting R1. This means that the high-frequency loop gain will tend to −A(s), thereby ensuring
stability.

1.3
At low frequency the stage behaves as a follower, meaning that the output PSD becomes:

SV o = SV + SIR
2.

At high frequencies R1 is short-circuited and we get SV o = SV . We then conclude that the input noise
voltage experiences a unity-gain transfer over (almost) the entire frequency range; the rms output noise will
then be

V 2
o ≈ SV

π

2
GBWP ≈ (0.1 mV)2.

The noise current is instead filtered by the capacitor poles, located around 1 MHz; its contribution will then
approximately be

V 2
o ≈ SIR

2
π

2
106 ≈ (0.01 mV)2.
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Figure 1: Left: Bode magnitude diagram of the closed-loop gain. Right: output step voltage response.

1.4
In the Laplace domain, the output voltage would be

Vo(s) = GidVi(s) = − sCR

(1 + sCR)2
Vi

s
,

whose initial and final values can be easily computed:

Vo(0) = lim
s→∞

= sVo(s) = 0

Vo(∞) = lim
s→0

= sVo(s) = 0.

We expect then a negative pulse with zero initial and final value that can be approximately drawn. For those
longing for the analytical expression, we recall that multiplication by −t equals derivation in the s domain,
so that

1

τ
e−t/τ ⇒ 1

1 + sτ
t

τ
e−t/τ ⇒ τ

(1 + sτ)2
,

which means

Vo(t) = −Vi
t

CR
e−t/CR,

shown in Fig. 1 (right) for Vi = 1 V.

Problem 2

2.1
The matched filter for this case has a rectangular weighting function and the output S/N becomes:

S

N
=

GAT√
G2λT

= A

√

T

λ
.

The output of the matched filter is a symmetric (mathematically: isosceles) triangular signal (autocorrelation
of the input signal), reaching the maximum value GAT at t = T (Fig. 2, left).
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Figure 2: Left: Output signal to a single positive input pulse. Center: output contribution for two pulses,
the second being either positive (red) or negative (blue). Right: Superposition of the pulses in
Fig. 2 (center). Note that the values at T , 2T , and so on are always ±GAT .

2.2
Since the filter is linear, the output to a series of pulses is the superposition of the single-pulse response just
highlighted. It is then clear that the output pulses do not interfere and can be easily detected if the pulses
are separated by a time interval longer than T . If the separation becomes smaller, we have a pile-up of the
responses, what in communication is called the inter-symbol interference.
However, it is easy to see that even in the case of Tw = 0 (see output pulses in Fig. 2, center) the output
after a duration T are always correct, i.e., are the same that would be measured with a single pulse (Fig. 2,
right). This means that in principle we could have Tw = 0. Of course, in this case we’d have to have a
synchronization signal for sampling the output at the right time, but this goes beyond our treatment.

2.3
The new S/N becomes:

S

N
=

GAT
√

G2λT + 2(GT )2
(

K
fmin

− K
fmax

)

≈ A

√

T 2

λT + 2KT 2/fmin

and is of course no longer the optimum one. As the total noise PSD is now λ +K/f2, the whitening filter
transfer function H must be such that

(

λ+
K

f2

)

|H|2 = const ⇒ |H|2 = const
f2

K + λf2
⇒ H = const

sτ

1 + sτ
,

which is a simple high-pass filter having τ =
√

λ/K/2π.

2.4
The HPF response to a rectangular pulse is well-known and won’t be discussed here once again. Clearly, we
have now a baseline problem which affects the pulse stream detection, meaning that Tw must now be larger
than 4 − 5τ . This solution may not be very effective, in particular when τ is much larger than T and we
want to maintain a high pulse rate.
To put the icing on the cake, we get the new value of the optimum S/N with simple calculations:

S

N
= A

√

τ(1− e−T/τ )

λ


