
Electronics – September 23 2016 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is an integrator with an “autozeroing” loop to cancel the effect of the OA DC
non-idealities. The switches are controlled by the digital signal S or by its opposite S. The amplifier has
Ao = 106 dB and GBWP = 10 MHz. Component values are R = 1 kΩ, RZ = 10 kΩ, C = 1 µF, CZ = 10 µF.

1. Consider the effect of the offset voltage of the OA. Discuss the behavior when S is low (correcting phase,
input grounded) and high (integrating phase, input signal applied), explaining the working principle.

2. Compute the loop gain for one conditions of S at your choice and compensate if needed.

3. Compute the rms output voltage noise when the OA has
√

SV = 10 nV/
√
Hz (4kBT ≈ 1.646×10−20 J).

Refer to the integration condition and pick a sensible value for the minimum frequency.

4. Propose a solution to avoid/minimize the drawback related to the discharge of CZ .

Problem 2
To measure the amplitude of a pulse in presence of a noise with known autocorrelation Rnn(τ), we take two
weighted samples, as shown in the figure on the right. The first sample acquires the noise only, the second
the signal plus the noise.

1. Find the expression of the output noise.

2. Find the value of K which minimizes the output noise.

3. Consider an exponential autorrelation Rnn(τ) = n2
x e−|τ |/Tn and a signal A(1 − e−t/Ts). Find the

optimum value of T when Tn ≪ Ts and Tn ≫ Ts. Approximated results are fine and encouraged, if
justifications are provided.

4. Find the optimum filter and its corresponding S/N for the previous case, considering that the mea-
surement has to be completed in a finite time TM .

Question
Discuss the bias and offset errors is OAs and their compensation techniques.

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by July 28th Mark registration: Monday, Oct 3rd



Solution

Problem 1

1.1
At first glance, the behavior can be explained as follows: when S is low (switch open) and the S switches
are closed (Fig. 1, left), a voltage equal to VOS is stored onto C. When the switches are reversed (Fig. 1,
right), the output goes at V − − VC = 0, so that the offset does not appear at the output and integration
starts from zero.
The actual behavior is a bit more complicated: during the correcting phase, the stage is connected as an
amplifier (Fig. 1, left) and the voltage across the zeroing capacitor CZ is now VOS(1+RZ/R) = 11 VOS. When
the switches are reversed (Fig. 1, right), the circuit works as an integrator. In a standard integrator, a current
VOS/R would flow through C, offsetting the output. Here, CZ itself provides the current (11 VOS)/(RZ+R) =
VOS/R, so that no offset current flows through C and no error appears at the output. The circuit will then
truly integrate only the input signal.
Of course, as CZ discharges, cancellation is no longer perfect and errors start to arise, so the operation must
be periodically repeated with a time interval smaller than the time constant CZRZ .

1.2
We start with the case in Fig. 1, left (S = low). Clearly, there is a pole introduced by C which degrades the
phase margin, while CZ does not come into play as it is short-circuited by the OA output voltage source.
We can employ the standard compensation technique used for resistive amplifiers and place a capacitor CC

in parallel to RZ , chosen such that

RC = RZCC ⇒ CC = 100 nF,

leading to Gloop = −R/(R + RZ)A(s). In the other case, we define Z = R ‖ (RZ + 1/sCZ) = R(1 +
sCZRZ)/(1 + sCZ(R +RZ)), so that we can write:

Gloop = −A(s)
Z

Z + 1/sC
= −A(s)

sCR(1 + sCZRZ)

1 + s(CR+ CZR+CZRZ) + s2CCZRRZ
.

This loop is clearly stable, with poles at around 1/222πCR ≈ 1.4 Hz and 111/200πCR ≈ 176 Hz (plus the
OA one) and zeros in the origin and at 1.6 Hz. It features an asymptotic behavior equal to −A(s) with
consequent phase margin of 90◦.

1.3
The noise transfer functions are
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where Z = R ‖ (RZ + 1/sCZ) ≈ R (pole and zero are at 1.45 and 1.59 Hz) and we have a divergence
for f → 0. However, the minimum operating frequency is dictated by the offset nulling procedure, which
actually holds if CZ is not significantly discharged. As its discharge time constant is CZRZ = 100 ms, we
can set the maximum integration time equal to about 10 ms, i.e., a minimum frequency fmin ≈ 100 Hz. We
then have:

V 2
o = SV

π

2
GBWP + (SV + SVR

)
1

(2πCR)2

(

1

fmin
− 1

GBWP

)

+ SVRZ

(

CZ

C

)

2 1

4CZRZ
≈ (4 µV)2,

dominated by the first term (the additional pole at GBWP has also been accounted for).

1.4
Besides increasing the value of CZ , we could of course increase the value of RZ , paying attention to the
output dynamic limit, but a better solution is to place a buffer stage between the storage capacitor CZ and
the resistor RZ . In this way, the discharge is only limited by the leakage current of the buffer.
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Figure 1: Circuit schemes when S is low (left) or high (right).

Problem 2

2.1
To compute the output rms noise, we need the time correlation of the weighting function, which in this case
is

kww(γ) = (1 +K2)δ(γ) −Kδ(γ ± T ).

The output noise is then

n2
y =

∫

kww(γ)Rxx(γ)dγ = (1 +K2)n2
x − 2KRxx(T ) = n2

x(1 +K2 − 2Kρxx(T )),

where ρxx = Rxx/n2
x = Rxx/Rxx(0) is a sort of normalized autocorrelation.

2.2
Minimizing the previous expression with respect to K, we easily obtain K = ρxx(T ), i.e.

n2
y = n2

x(1−K2) = n2
x(1− ρ2xx(T )).

2.3
From the above calculations, the expression of the output S/N is

(

S

N

)

=
A

√

n2
x

1− e−T/Ts

√

1− e−2T/Tn

.

If Tn ≪ Ts, we are dealing with quasi-white noise and the filter is ineffective (K ≈ 0). The best choice is
then to sample the signal once it has reached its steady-state, at T ≈ 5τ . This leads basically to a single

sampling operation and to S/N = A/

√

n2
x.

The above value of S/N can always be attained if T ≫ Tn. However, if we are dealing with a long noise
correlation time, i.e., if Tn ≫ TS , we can exploit the filter to improve S/N , whose expression now becomes
(expand the exponential at the denominator because of the long Tn):

(

S

N

)

≈ A
√

n2
x

1− e−T/Ts

√

2T/Tn

=
A

√

n2
x

√

Tn

2TS

1− e−T/Ts

√

T/TS

.



Clearly, the optimum choice of T is only dependent on TS , while Tn will only determine the value of S/N . T
cannot be much larger or much smaller than TS , as S/N would collapse. A reasonable choice is then T ≈ TS

(discussed many times in past exam tests), leading to

(

S

N

)

≈ A
√

n2
x

√

Tn

2TS
(1− e−1) =

A
√

n2
x

0.63

√

Tn

2TS
.

S/N is improved with respect to the previous case when Tn > 2TS/(0.63)
2 ≈ 5Ts.

2.4
The noise PSD is the Fourier transform of a symmetric exponential function and has been computed several
times (think of the autocorrelation of an LP-filtered white noise), resulting in

S(ω) =
2n2

xTn

1 + ω2T 2
n

,

while the signal in the frequency domain is

AX(s) =
A

s

1

1 + sTS
⇒ |X(ω)| = A

ω

1
√

1 + ω2T 2

S

∗ sinc(ωTM/2),

where the effect of the finite measurement time has been accounted for via the sinc term (neglecting the
phase-shift term). The optimum filter weighting funtion is therefore

Wopt(t, ω) =
|X(ω)|
S(ω)

and the resulting S/N can be obtained as

(

S

N

)2

= A2

∫ |X(f)|2
S(f)

df,

which unfortunately cannot be directly solved. Let’s move to the time domain, then. The whitening filter is

Hw(s) = 1 + sTn,

and the signal at its output becomes AXw(s), where

Xw(s) = X(s)H(s) =
1

s

1 + sTN

1 + sTS
=

1

s
+

Tn − TS

1 + sTS
⇒ xw(t) =

(

1 +
Tn − TS

TS
e−t/TS

)

u(t),

which can also be obtained regarding the filter as the sum of a unity-gain and a differentiator. Since the
noise is now white, the final S/N becomes

(

S

N

)

2

=
A2

2n2
xTn

∫ TM

0

x2w(t)dt =
A2

2n2
xTn

(

TM +
T 2
n − T 2

S

2Ts
− (Tn − TS)

2

2TS
e−2TM/TS − 2(Tn − TS)e

−TM/TS

)

,

obviously increasing with TM .


