
Electronics – March 3 2016 Prof. A. Spinelli

+
CL

gm

Ii
Vo

C

1+sτ
Vi(s)=A τ Ampl. HPF GI

SWN+ K
f

A

log f

t

Problem 1
The OA in the left figure is a transconductance amplifier, providing an output current proportional to the
differential input voltage, Io = gm(V + − V −), with gm = 10−2 S. The amplifier has an output resistance
Ro = 10 kΩ.

1. Compute the ideal closed-loop gain of the stage (Vo/Ii) and find the capacitor values granting unit
gain magnitude at 10 MHz.

2. Compute the loop gain of the stage and find the capacitor values granting a zero-dB frequency of
100 MHz.

3. Compute the total output noise PSD due to the input noise sources of the amplifier,
√

SV = 5 nV/
√
Hz

and
√

SI = 10 pA/
√
Hz.

4. Modify the circuit to achieve an integrator for a voltage source input and discuss the proposed solution.
Neglect CL for simplicity.

Problem 2
An exponential signal (right figure) having A ≈ 100 µV and τ = 0.5 µs sits on top of a background noise
having unilateral SV = SWN +K/f = (10−15 + 3 × 10−10/f) V2/Hz. The signal is fed into a preamplifier
having single-pole bandwidth of 10 MHz.

1. Design an HPF that allows to neglect the effect of the flicker noise component (hint: set V 2
o,WN =

10V 2
o,FN ).

2. Compute the HPF output signal as a function of time.

3. Design a GI following the HPF, to enhance S/N .

4. A baseline restorer is used immediately after the amplifier, replacing HPF and GI. Discuss the effec-
tiveness of the solution.

Question

Describe the noise parameters of Operational Amplifiers and their dependence on technology.

For a correct evaluation you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by March 7th Mark registration: Friday, March 11th



Solution

Problem 1

1.1
In the ideal case, the gain of the operational transconductance amplifier (OTA in the following) is infinite,
meaning that its inverting input becomes a virtaul ground, and the input current Ii flows into the feedback
capacitor, setting

Vo = − Ii
sC

.

The stage is then an inverting integrator. To have gain magnitude of 0 dB at f0 = 10 MHz we must have

1

2πf0C
= 1 S ⇒ C =

1

2πf0
= 16 nF,

while the value of CL is irrelevant. We note in passing that in this circuit the direct gain in non-zero. In fact,
if we remove the OTA output current source, we still get a non-zero transfer, as Ii flows directly through C
and CL giving

Gdir = ZCL
‖ Ro =

Ro

1 + sCLRo
,

so that the true expression for the closed-loop gain is

G =
Gid

1− 1/Gloop
+

Gdir

1−Gloop
=

GOL +Gdir

1−Gloop
.

The additional term becomes relevant at high frequencies, but we will neglect it in the following for simplicity.

1.2
To compute the loop gain we need to open the loop and insert a test signal, having shut off the input
current source. We note that the OTA output is a current source, so that the impedance must be carefully
reconstructed if a voltage source is to used as a test signal, as we usually do. This is by no means difficult,
but is left as a control exercise: we instead avoid this by breaking the loop at the amplifier input (Fig. 1,
left) and observe that no current is flowing into the capacitor C, yielding

Gloop = −gm(Ro ‖ ZL) = − gmRo

1 + sCLRo
,

which is a transfer function with a single pole, causing no stability problem and crossing the zero-dB axis at
a frequency fc = gm/(2πCL). The condition on GBWP becomes then

CL =
gm
2πfc

= 16 pF,

meaning that the circuit is able to drive only very small capacitive loads over the required bandwidth. Note
that now is the value of the capacitor C that does not enter the calculation.

1.3
The input noise curent is transferred as the signal, while the input voltage noise experiences a unity-gain
transfer. This translates into an ouput noise PSD

SVo
= Sv + SI

1

(2πfC)2
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Figure 1: Left: Schematic for the loop gain calculation. Right: time dependence of input (red) and output
(blue) voltage to the HPF filter.

1.4
We use the standard configuration for an integrator, placing a resistor R in series to the inverting input.
The ideal transfer is obviously −1/sCR, but we need to pay attention to the loop gain. Neglecting CL for
simplicity, it becomes

Gloop = −gm
Ro

ZC +R+Ro
R = − sCgmRRo

1 + sC(R+Ro)
.

This, again, shows no stability problem, but if we look at the flat part beyond the pole, we see a loop gain
value given by −gm(R ‖ Ro), meaning that small values of R will degrade the loop gain, whose maximum
value is −gmRo = −100, achieved for R ≫ Ro.

Problem 2

2.1
The output noise due to the white component is simply

V 2
o,WN = SWN

π

2
(BW − fHP ) ≈ SWN

π

2
BW,

where we assumed BW ≫ fHP . The flicker noise contribution after the introduction of the HPF is

V 2
o,FN = K ln

(

BW

fHP

)

,

so that our requirement means:

V 2
o,FN =

V 2
o,WN

10
⇒ fHP = BWe−V 2

o,WN
/10K ≈ 53 kHz,

meaning that the HPF time constant is τHP ≈ 3 µs. Note that fHP is close to the noise corner frequency.

2.2
By noting that the Laplace transform of the signal Vi(t) is simply

Vi(s) = A
τ

1 + sτ
,



we see immediately that its bandwidth is 1/2πτ ≈ 320 kHz, meaning that it is not affected by the amplifier.
To compute the effect of the HPF, we stick to the frequency domain: the output signal becomes

Vo(s) = Vi(s)
sτHP

1 + sτHP
= A

τ

1 + sτ

sτHP

1 + sτHP
,

which we need to antitransform. This is easily done by decomposition:

Vo(s) = A
ττHP

τHP − τ

(

1

1 + sτ
− 1

1 + sτHP

)

⇒ Vo(t) = A

(

τHP

τHP − τ
e−t/τ − τ

τHP − τ
e−t/τHP

)

u(t),

u(t) being the usual unit step function. The output (and input) voltage are shown in Fig. 1 (right).

Of course, it is perfectly fine to work out the qualitative behavior just by inspecting the circuit: HPF has a
zero in the origin, i.e., no DC transfer, i.e., zero mean value of Vo(t). The input exponential has then to be
followed by a negative tail dictated by the slower time constant.
Yet another different approach would be to recognize that real poles in the transfer function translate into
exponential signals, so that we could write:

Vo(t) = (C1e
−t/τ + C2e

−t/τHP )u(t),

where the constants can be found requiring Vo(0) = A and

∫

Vo(t)dt = C1τ + C2τHP = 0.

2.3
The input signal to the GI is what we have just computed. At the GI input we then have

S

N
=

A
√

V 2
o,WN

= 0.8,

not too bad, but let’s see if we can do better. We set the integration time equal to the zero-crossing time of

Vo(t), t0 =
ττHP

τHP − τ
log

(τHP

τ

)

≈ 1 µs, obtaining

S

N
=

∫ t0

0

Vo(t)dt

√

SWN t0/2
= A

√

2

SWN t0

ττHP

τHP − τ

(

e−t0/τHP − e−t0/τ
)

= 1.5.

A slightly better result can be achieved approximating the early stage of the exponential decay by a linear
decay (see Fig. 1, right) and recalling that the best integration time for this case is equal to 2/3 of the pulse
time; integrating up to 2t0/3 we get S/N = 1.7.
To be more precise, however, we should point out that the GI has largely reduced the bandwidth, hence the
white noise, so that now the flicker noise contribution could be no longer negligible. As a matter of fact,
the normalized (DC gain = 1/t0) output noises are

√

SWN/2t0 ≈ 22 µV and
√

K log(τHP /2t0) ≈ 11 µV,
leading to a total noise of about 24 µV rms; actual values of S/N are somewhat degraded.

2.4
The BLR is effective in cutting correlated noise, but cannot help in reducing the white noise, meaning that
the best S/N that we can achieve is 0.8, the value computed in #2.3. The proposed arrangement is then
not a particularly effective solution.


