
Electronics – July 4 2016 Prof. A. Spinelli
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Problem 1
The scheme in the left figure represents a simple crossover filter for audio applications. The JFET amplifier
has Ao = 25 V/mV and GBWP = 3 MHz. Other parameters are R = 2 kΩ, C = 80 nF.

1. Compute the (ideal) closed-loop gains of the stage.

2. Compute the loop gain of the stage and verify its stability.

3. Compute the rms noise for both outputs when the input noise voltages of the OA and buffer are√
SV = 18 nV/

√
Hz. What are the contributions from the current noise

√
SI = 10 fA/

√
Hz?

4. Design a scheme that performs the function in the dashed box using only one OA.

Problem 2
A stream of equal rectangular pulses with amplitude A ≈ 100 µV, duration TP = 10 ns and average separation
TS = 1 µs is affected by a noise having bilateral PSD λ = 10−15 V2/Hz and bandwidth fn ≈ 1 GHz.

1. Find the parameters of an acquisition system that allows to measure the pulse amplitude with S/N =
10.

2. The filter works for one hour. Find the maximum value of the flicker noise corner frequency that
does not degrade the total noise performance (hint: set the noise rms values to be equal; use simple
approximations to compute the rms value).

3. The gate of the filter in #2.1 closes and opens with a random delay TD in the 0 − 10 ns range. Find
the new values of the parameters.

4. A discrete-time filter with power-law weighting (pk = αk) is used in place of the filter in #2.1. Find
the value of α (or Neq) that gives S/N = 10.

Question
Describe the noise modulation and filtering by an LIA.

For a correct evaluation you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by July 8th Mark registration: Tuesday, July 12th



Solution

Problem 1

1.1
The OA is connected as an integrator, so that

Vo2 = − Vo1

sCR
,

while the upper part of the circuit imposes:

Vo1 = Vi + Vo2 = Vi −
Vo1

sCR
⇒ Vo1 = Vi

sCR

1 + sCR
.

From that, we get:

Vo2 = − Vo1

sCR
= −Vi

1

1 + sCR
.

The two outputs provide then a low- and a high-pass filtered version of the input voltage. The pole frequency
is fp = 1/(2πCR) = 995 Hz ≈ 1 kHz.

1.2
If we break both loops at the output of the OA, we immediately see that there is a unity-gain transfer to
the inverting input of the OA, so that it is

Gloop = −A(s),

from which the stage stability is ensured. Outrageously easy!

1.3
The scheme for noise calculation is shown in Fig. 1 (left). From it, we can easily derive the following
relationships:

Vo2 = −Vo1
1

sCR
+ Vn2

1 + sCR

sCR
Vo1 = Vo2 + Vn1,

which lead to
Vo1 = Vn1

sCR

1 + sCR
+ Vn2 Vo2 = Vn1

1

1 + sCR
+ Vn2,

where a minus sign has been dropped. From here, evaluating separately the noise contributions, we obtain

V 2
o1 = SV

π

2
(fp + 2(GBWP − fp)) ≈ (55 µV)2

V 2
o2 = SV

π

2
(2fp + (GBWP − fp)) ≈ (39 µV)2,

where the pole at GBWP due to the loop gain evaluated in #1.2 is also included.
As for the current noise, the only one that gives a non-zero contribution is the one on the inverting input of
the OA, that can be neglected given its extremely low value (it is much smaller than the current noise of R,
which has the same transfer). As a reference, its effect is:

SV o1 = SV o2 = SI

∣∣∣∣ R

1 + sCR

∣∣∣∣2 ,
giving a contribution to V 2

o1 and V 2
o1 equal to (0.8 nV)2.
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Figure 1: Left: Schematic for the noise calculations. Right: scheme for a two-input adder.

1.4
The standard configuration for the adder is based on an inverting configuration and requires additional
inverting stages. However, we can easily exploit the non-inverting amplifier and a voltage divider to achieve
the desired result, as shown in Fig. 1 (right).

Problem 2

2.1
As we have a repetitive signal, the best choice is the boxcar averaging filter. The expression of the final S/N
is then (

S

N

)
BA

= A

√
2TF

λ
= 10 ⇒ TF =

50λ

A2
= 5 µs,

while we obviously set the gate time equal to the pulse width Tp = 10 ns. This corresponds to a number
of equivalent samples equal to 1000. Note that we have used a white-noise approximation, which is well
justified considering that the noise bandwidth is one order of magnitude larger than the single-pulse equivalent
bandwidth.

2.2
We know that the low-frequency part of WF has a pole at a frequency about equal to fmax ≈ 1/(2πTenv) =
318 Hz, where Tenv ≈ TFTS/TC = 500 µs. The white and flicker noise contributions are then

V 2
o = G2 λ

2TF
+G2K ln

(
fmax

fmin

)
.

These are equal for

fnc =
1

4TF ln(fmax/fmin)
,

where we set K = 2λfnc (the factor of 2 is because we are considering a unilateral flicker noise). If we now
set fmin = 1/3600 ≈ 2.8× 10−4 Hz, corresponding to an operating time of one hour, we get fnc ≈ 3.6 kHz.

2.3
To avoid cutting the signal, we must open the gate 10 ns in advance of the pulse arrival (i.e., delaying
the pulses) and close it when the pulse ends. This means that in the worst case (no delay at aperture,
maximum delay at closure) we could end up with a gate pulse extending for TC = Tp + 2TD = 3Tp = 30 ns.
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Figure 2: Weighting function of the filter in #2.3 accounting for the gate uncertainty (worst conditions). The
signal exists only in correspondence of the red intervals.

Considering that the signal pulse is only 10 ns long, it is clear that we are integrating for 20 ns per pulse
without any actual signal (although, to be fair, there is a small probability that two pulses will overlap,
as 1 µs is the average pulse separation time). However, we are indeed collecting noise during those 20 ns!
The new weighting function is shown in Fig. 2, where the red areas represent the intervals when the signal
is present (note that the pulse separation time is not constant). We can still regard this filter as a boxcar
averager, but we need to reassess the single-pulse S/N , which is now(

S

N

)
sp

≈ ATp√
λTC

=
ATp√
3λTp

.

The final S/N is now (
S

N

)
BA

=

(
S

N

)
sp

√
2TF

TC
=

(
S

N

)
sp

√
2TF

3Tp
=

1

3
A

√
2TF

λ
,

from which we obtain the new value TF = 45 µs.
Another way to look at this filter is to notice that from the signal viewpoint it is behaving like a ratemeter,
for there is a discharge between successive acquisitions. The output signal is then

Sout = A
1− e−Tp/TF

1− e−(Tp+TO)/TF
≈ A

Tp

Tp + TO
=

A

3
.

From the (white) noise viewpoint, instead, nothing has changed from the previous case, so that we have

n2
out =

λ

2TF
,

meaning that a new value of TF which is nine times the one computed in #2.1 is needed to achieve the same
S/N .

2.4
The output S/N for a discrete-time filter with power-law weighting is

S

N
= 10 =

A√
n2
in

√
Neq ⇒ Neq = 100

n2
in

A2
,

where n2
in = 2fnλ. Plugging in the numbers, we get Neq = 20000 and α = (Neq−1)/(Neq+1). The difference

with respect to the previous case is due to the integration performed by the Boxcar.


