
Electronics – July 21 2016 Prof. A. Spinelli
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Problem 1
The OA in the left figure is a non-inverting audio amplifier with an offset reduction loop. The amplifier has
Ao = 106 dB and GBWP = 10 MHz. Other parameters are R1 = 1 kΩ, R2 = 2 kΩ, R3 = 66 kΩ, R = 15 kΩ,
C = 2.2 µF, τi = 60 ms.

1. Compute the (ideal) closed-loop gain of the stage.

2. Compute the loop gain of the stage and find the maximum input capacitance compatible with a phase
margin of 45◦ at least.

3. Compute the rms output noise due to the input noise voltage of the OA,
√

SV = 6 nV/
√
Hz. What

are the contributions from the voltage noises of the buffer and integrator stages?

4. What is the maximum DC input offset that can be nulled by the stage if the output dynamics of all
blocks is ±10 V? How can it be improved?

Problem 2
A triangular signal is affected by a noise having the nearly rectangular autocorrelation function shown in the
figure on the right.

1. Consider Tn ≪ T and find the optimum S/N .

2. It is now Tn ≫ T . Consider a suitable HPF and compute the resulting S/N .

3. Consider a GI. Find the expression for the output S/N and its value when TG = T .

4. Consider now the case of Tn = T/2. Compute the optimum filter and comment on the result.

Question
Discuss the instrumentation amplifier architecture, properties and parameters.

For a correct evaluation you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by July 25th Mark registration: Wednesday, July 27th



Solution

Problem 1

1.1
The voltage at the output of the unity-gain buffer is

Vb =
Vo

sτi

1

1 + sCR
,

so that the voltage at the inverting input of the OA becomes (linear superposition)

V − = Vb
R1 ‖ R2

R1 ‖ R2 +R3

+ V0

R1 ‖ R3

R1 ‖ R3 +R2

≈ Vb

100
+

Vo

3
,

where we have considered R3 ‖ R1 ≈ R1. Considering that V − = V + = Vi and substituting for Vb, we
eventually get

Vo

Vi
=

300sτi(1 + sCR)

100s2τiCR+ 100sτi + 3
,

which is a function with a zero in the origin and one in fz = 1/2πCR = 4.8 Hz. The two poles are instead
located at fp1 = 0.08 Hz and fp2 = 4.7 Hz. There is then a pole-zero cancellation and the amplifier bandwidth
extend down to 0.08 Hz, removing only DC and very low frequency components. The midband gain is equal
to 3.

1.2
We can solve the second part of the problem very easily, noting that τi and RC have pretty large values,
meaning that the external loop transfer function is basically zero after a few Hz (the RC pole is at around
5 Hz). For higher frequencies, we are left with a standard non-inverting amplifier with a gain of 3, having
bandwidth equal to GBWP/3 = 3.3 MHz. As the resistance seen by the input capacitor Ci is R1 ‖ R2 ‖
R3 = R1 ‖ R2, we immediately get

1

2πCi R1 ‖ R2

= 3.3 × 106 ⇒ Ci ≈ 72 pF. (1)

As far as the loop gain calculation is concerned, we break the loop at the OA output and apply the test
signal Vs. The voltage at the output of the unity-gain buffer is then (see above)

Vb =
Vs

sτi

1

1 + sCR
,

and the voltage at the inverting input of the OA is

V − = Vs
R1 ‖ R3

R1 ‖ R3 +R2

+ Vb
R1 ‖ R2

R1 ‖ R2 +R3

≈ Vs

3
+

Vb

100
.

Considering that Vo = −A(s)V −, we immediately get

Gloop = −A(s)

(

1

3
+

1

100sτi(1 + sCR)

)

.

Obviously, a faster way to reach the result would be to note that the open-loop gain is simply A(s) (just
disconnect both loops), so that Gloop = −A(s)/Gid.
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Figure 1: Left: Schematic for the noise calculations. Right: signal and weighting function (red) for the GI.

1.3
The OA contribution is simply trasferrred like the input signal, i.e., with a gain of 3 over the bandwidth
0.08 Hz – 3 MHz. The output contribution is then

V 2
o = Sv9

π

2

GBWP

3
= 1.87 × 10−10 V2 = (41 µV)2.

The scheme for computing the other contributions is shown in Fig. 1 (left). Noting that no current flows in
R1 and that OA is connected as an inverting amplifier with gain −R2/R3, we can write:

(Vo − Vn3)
1

sτi

1

1 + sCR
− Vn2 = −Vo

R3

R2

⇒ Vo = Vn2
sτi(1 + sCR)

1 + 33sτi(1 + sCR)
+

Vn3

1 + 33sτi(1 + sCR)
,

from which it is clear that these contributions are negligible: Vn3 sees the first pole at 0.08 Hz (same poles
as above), Vn2 has a bandwidth similar to that of Vi, but with a gain of 1/33. Once again, knowing the pole
positions, we could have just short-circuited the capacitor C, working out the simple transfers valid for all
frequencies larger than about 5 Hz.

1.4
The result is straightforward from the second equation of #1.1. Setting V − = Vi = VDC and Vo = 0 we get
Vb = 100VDC , which translates into a maximum input offset of 100 mV. To further improve this value, the
best solution is to decrease the value of R3. This will obviously change somewhat the poles position.

Problem 2

2.1
If Tn ≪ T the noise can be approximated as white, with a PSD λ = 2Tnn2

x, and the optimum weighting
function tracks the signal. The value of S/N is then

(

S

N

)

=
A√
λ

√

∫

x2(t)dt =
A

√

n2
x

√

T

3Tn
.

2.2
In the time and frequency domains, the HPF is described by

h(t) = δ(t) − e−t/TF u(t) ↔ |H(f)| = ωTF
√

1 + (ωTF )2
.



Since the frequency-domain integral is complicated, we chose the time domain, where

khh(τ) = δ(τ) − 1

2TF
e−|τ |/TF

and (calculations done verbatim in the class)

n2
y =

∫

Rnn(τ)khh(τ)dτ = n2
x −

1

TF
n2
x

∫ Tn

0

e−|τ |/TF dτ = n2
xe

−Tn/TF .

If the time constant of the filter is much larger than T and there is no baseline problem, the signal is not
affected and we have

(

S

N

)

=
A

√

n2
x

√

eTn/TF .

2.3
The output signal is now (see Fig. 1, right)

y(t) =

∫

x(τ)w(t, τ) = K

∫ TG/2

−TG/2
x(τ)dτ = KA

(

2− TG

2T

)

TG

2
,

where K is the amplitude of the weighting function and we have centered the integration window around
the maximum of the signal. Please note that the result is just the area of the trapezoid and there is no real
need to solve (trivial) integrals. As for the noise, assuming Tn ≤ TG, we have

n2
y =

∫

Rnn(τ)kwtt
(τ)dτ = K2TGn2

x

(

2− Tn

TG

)

Tn,

which is easily computed from the previous result, as now kwtt
(τ) is triangular with amplitude K2TG and

Rnn has a rectangular shape. For TG = T we have then

(

S

N

)

=
A

√

n2
x

3

4

√

T

Tn(2− Tn/T )
.

Results for Tn > TG equals those for Tn = TG = T .

2.4
In the general case, the optimum weighting function in the frequency domain is the ratio between the signal
transform and the noise PSD, which in this case becomes

|W (t, f)| = X(f)

Sn(f)
=

AT sinc2(πfT )

2n2Tn sinc(2πfTn)
= K sinc(πfT ),

meaning that w(t, τ) has a rectangular shape matching the noise autocorrelation (note: this is not a general
feature, but a result of this particular case, to be discussed later). The output S/N would then be:

(

S

N

)2

= A2

∫ |X(f)|2
Sn(f)

df ∝
∫

sinc3(πfT )df,

which is not straightforward to evaluate. We must then resort to the time domain, where w(t, τ) = K rect(T ).
The output signal and noise are obtained once again from the results in #2.3 when Tn = T/2, i.e.,

(

S

N

)

=
A

√

n2
x

3

4

√

2

(2− 1/2)
. =

A
√

n2
x

√

3

4
.

Note that the output S/N is worse than the input one, given simply by A/

√

n2
x, meaning that the filter

cannot be optimal! The twist here is once again in the approximation of the noise autocorrelation and its
Fourier transform sinc(πfTn), which takes negative values in certain frequency range, while real noise PSDs
are always positive.


