Electronics — September 5 2016 Prof. A. Spinelli

Z(x)

Problem 1
The scheme in the left figure is an active filter. The amplifiers have A, = 106 dB and GBW P = 10 MHz.
Component values are R = 10 k), C1 = 0.16 pF, Cy = 20 nF.

1.

2.

Compute the (ideal) closed-loop gain of the stage.

Compute the loop gain of one of the OAs while assuming the other to be ideal, and check the stability.
Comment on the effect of the real gain of the OA.

3. Compute the rms output noise due to the input noise voltage of the OAs, /Sy = 10 nV/vHz.
4. The OAs output resistances are R, = 50 2. What is the maximum attenuation of the signal at high
frequencies?
Problem 2

The scheme in the left figure is used to measure small variations in an impedance value by using an LIA.
The INA has input noise PSD Sy = K/f with K = 1072 V2 The bridge AC supply is V. cos(w,t) with
Vee=1V.

1.

Consider a resistive bridge in which Z(z) = R + AR, with R = 10 kQ2 and AR ~ 1 Q. The value of
the impedance remains stable for up to 10 s. Find the LIA parameters to obtain S/N > 10.

. What is the minimum bandwidth of the (single-pole) INA if the S/N degradation it introduces must

be kept smaller than 1%?

. The impedance Z(x) can now be schematized as an R—C parallel, in which C' may also vary (C' = 1 nF,

AC =~ 1 pF) within the same bandwidth as R. Set up a suitable Wheatstone bridge and discuss how
you would measure Z, specifying the new LIA parameters and the resulting S/N (hint: perform two
measurements).

. Assuming to have a double-demodulator LIA with phase and quadrature outputs, discuss the new

bridge/measurement setup and work out the expressions for the output S/N.

Question
Briefly discuss the deformation sensors operation, parameters and manufacturing technologies.

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by September 8" Mark registration: Monday, September 12"




Solution

Problem 1

1.1
The second stage is a voltage follower, so the voltage at its non-inverting input is equal to V,. Because of
the R — Cy LPF, we can then write the following relation between V,; (the output of OA1) and V;:

1
Vo=Voo———= =V, = V,(1 + sCyR).
11+SCQR:> ! ( R )
Now, the KCL at the inverting input of OA1 gives us the required solution:
Vi Vo Vo 1
— + 5 +sCi(1+sCR)V, =0= — =

R R V, 1+ sO1R+ s20,CoR?’

which is a second-order filter whose poles are fp; ~ 1/(2rC1R) ~ 100 Hz and fp ~ 1/(2nC2R) =~ 795 Hz.
The poles are not largely separated, so the approximation is a little shaky. True values are f,; ~ 117 Hz and
fp2 = 679 Hz.

1.2
We turn off V; and begins by breaking the loop of OA1 at its output. Applying a test signal Vs at the loop
and writing the KCL at the OA inverting input, we get

V= _ 1 |78 _
AoV HE(W_V)’

which leads to

1+sCiR+ 520102R2

(2 + SClR)(l + SCQR) ’

The loop is easily seen to be stable, with an asymptotic behavior equal to —A(s) and consequent phase
margin of 90°. OA2, connected as a follower, will introduce a pole at GBW P in its transfer function, but
this does not affect the phase margin (just note that OA2 is shortened by Cy; I'll leave the calculations to
you).

If the loop is broken at the OA2 output, we see that OA1 now works as an integrator, so that the voltage at
the non-inverting input of OA2 is

Gloapl - _A(s)

1 1
_‘/s )
SClR 14+ SCQR

VT =

leading to
1+ sC R + s*C1Co R?

SClR(l + SCQR) ’

which is also stable with a phase margin around 90°. OA1 will now add a pole at GBW P in its integrating
transfer function, which will not affect the phase margin (again, C; will shorten OA1, making its pole
irrelevant at high frequencies; do the maths if you don’t trust this explanation!). However, at low frequencies
the finite gain of OA1 also kicks in, limiting the maximum value of |Gjoep2| to A%. The loop gains in the
ideal case are reported in Fig. 1 (left).

1.3

The noise transfer functions are

Gloop2 - _A(s)

2+ sCiR 2 sC1R(1 + sCyR)  |?

S
VIIT T sC1R + s2C1Co R2 1+ sO1R + s2C1C5R2?|

where the singularities have already been computed. We have therefore:

SVO =

V2

—5 T T T
V2= Svig (4 + (Fp2 = fyp1)) + Svag (GBWP — fin) = Sy 5 GBWP ~ (39.6 pV)?,

dominated by the noise source of OA2
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Figure 1: Left: Loop gains (blue = Giopp1, red = Gioop2). Right: Wheatstone bridge arrangement for R — C
parallel impedance measurement.

1.4

The ideal transfer would tend toward zero as the frequency increases. In reality, the OA transfer function
goes to zero beyond GBW P, meaning that we only see R, at the OA ouput. Since the capacitors also
behaves as short circuits, the transfer now becomes

V. R 2 R,\?2
=~ ° ~(=2) =25x%x1075.
v, <R+RJ <R> 010

Problem 2

2.1
The bandwidth of the signal is approximately 0.1 Hz. Therefore, we pick the output filter bandwidth as
1 Hz. The modulated signal is instead

TR AR
Vs = Vcc? = ‘/CCE =25 uV,
where obviously xr = AR/R. The modulation frequency f,, can now be obtained from the expression for

S/N:

200K B
N /25 (fm) BW, Vs

Note that the total bridge resistor noise is 4kgTR ~ 1.6 x 10716 V? « K/fm = 107 V2, meaning that the
above expression is correct. It is probably needless to specify that the bridge is made up of identical resistors
R and that the bandwidrth of the INA must be larger than f,,.

2.2
The INA introduces a (single) pole at f, in the transfer function, affecting magnitude and phase of the
modulated signal. The magnitude is not a problem from the S/N viewpoint, as it affects signal and noise at
the same rate, but the phase is: the signal modulated at f,, experiences a phase shift A¢ = arctan(fn,/fp),
giving an output error term equal to cos A¢. For small values of A¢ we can then write
2

(29) >0.99 = A¢p<0.14 = f, > . ~ 7 kHz.

2 0.14
A similar value would be obtained if considering the error on the signal originating from the attenuation.

cosAp~1—



2.3
We need a balanced bridge, with no output when xgr = x¢c = 0. The best solution is therefore to employ a
bridge with R — C elements, as depicted in Fig. 1 (right). The pole of each element is:

_ 1
- 2rRC

Ip ~ 16 kHz,

meaning that the bridge can be seen as being essentially resistive at low frequencies and capacitive at high
frequencies. So, the best solution is to carry out two measurements, one at low frequency (where xzp is
measured) and one at high frequency (where z¢ is measured). S/N and parameter values in the first case
are just what obtained in #2.1. In the HF case we neglect the resistors, getting:

Vi 1/sC(xz¢) 1 1 T TCo

— ~

Ve 1/sC(zc)+1/sC 2 24zc 2 2024zc) 4

leading to a similar expression for S/N:

(¥) = Vv,
N 2Sv (fu)BW,
The requirement on S/N is easily satisfied as the flicker noise is smaller at higher frequencies and z¢ > xg.
The new modulation frequency fp must be larger than f,, and the INA bandwidth has to be increased

accordingly.
Note that a capacitive bridge was last spotted in the Electronics exam of June 29, 2012.

2.4
With a double-demodulator LIA we can use just one frequency and measure phase and quadrature compo-
nents, relating them to AR and AC. The sensitive element has an impedance given by

_ R(.%'R) _ R(l + 1‘3) N R(l + 1‘3)
14+ sC(zc)R(zg) 1+sCR(+2r)(1+xc) 1+sCR(1+zr+zc)

Z(x)

where we neglected the higher-order term xgzc. The other branches have obviously an impedance equal to
Z = R/(1+ sCR). The bridge output voltage is now

Ve = Z@) 1 (14+2zr)(1+ sCR) 1
Vee Z(x)+Z 2 (1+zp)(1+sCR)+1+sCR(1+zg+xc) 2
B zr — sCRzc _zr—sCRxc

" 2(2(1 +sCR) + zr(1 + 2sCR) + sCRxzc) ~ 4(1+ sCR)

It is now preferable to return to f,, ~ 1 kHz, so that we can neglect the phase shift and attenuation induced by
the 14+ sCR term at the denominator. The two demodulators will see signal amplitudes of V..xr/4 = 25 uV
and (Veexo/4)wmCR &~ 15.7 uV. The latter case leads to S/N ~ 8.8, which can be restored to 10 by slightly
increaseasing f,,, to about 1.3 kHz.



