
Electronics – September 10 2018 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is a current monitor (Vcm is a common-mode voltage). Component values are
R1 = 10 Ω, R2 = 1 kΩ, Rs = 0.01 Ω. The OA has Ao = 130 dB and GBWP = 10 MHz.

1. Find the expression of the output voltage. Why aren’t we using a simple I − V converter?

2. The OA has input capacitance equal to 32 pF (differential mode) and 8 pF (common mode). The input
resistance is 30 kΩ (differential mode) and 50 MΩ (common mode). Discuss the stability of the stage.

3. Compute the output rms noise voltage considering the equivalent noise sources of the OA,
√

SV =
1 nV/

√
Hz and

√

SI = 3 pA/
√
Hz, plus the resistor noise (4kBT ≈ 1.646 × 10−20 J).

4. Find a solution to eliminate the effect of the common-mode voltage Vcm (you can use multiple OAs).

Problem 2
The scheme in the right figure employs an LIA and an amplifier with a reference capacitor Cr = 2 pF to
measure the value of a test capacitor Ct = Cr +∆C. The OA has input noise voltage PSD SV = K/f with
K = 10−10 V2 and C = 0.5 pF. Consider Vr = 1 V.

1. We want to measure ∆C ≈ 0.1 fF. Find a set of values for the LIA parameters considering that the
measurement must be completed in 10 ms.

2. Find the condition on the OA offset voltage and (white) noise current PSD for them to not degrade
S/N . Repeat the problem for the flicker component.

3. Because of a gain error, the amplitude of the negative reference signal is now −(Vr + ∆V ). Evaluate
the effect on the output signal.

4. There are parasitic resistors Rt and R in parallel to Ct and C. Consider first each of them separately
and then together and find the condition for them not to degrade S/N (carefully consider the signal
phases).

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by September 13th Mark registration: Friday, Sep. 14th



Solution

Problem 1

1.1
By application of the linear superposition principle and elementary calculations, we get

Vo = Vcm − IiRs

(

1 +
R2

R1

)

.

Note that the transresistance of the stage is nearly 1 Ω, allowing to measure large currents (for example, if
the output dynamics is ±10 V and Vcm is small, the input range is ±10 A). With a simple I − V converter,
this current has to be sourced/sinked by the power OA. Here, instead, we can use an OA optimized for low
noise and low offset, increasing the precision.

1.2
Let’s start with some reasoning: the “ideal” transfer without any parasitic element would give a closed-loop
bandwidth of about 100 kHz. So, any singularity well beyond that value can be neglected. Now, CM input
resistances can be dropped, as they are in parallel to either Rs or R1 (and R2, but that’s much bigger). The
impedance given by Rs ‖ Cc can also be neglected, given its very low value (10 mΩ with a pole at 2 THz).
We are then left with a capacitance given by the parallel of Cd and Cc and a resistance nearly equal to R1,
yielding a pole in the loop gain at:

fp ≈
1

2π(Cc + Cd)R1

= 397 MHz,

clearly irrelevant. If you are passionate about analytical solutions, you can look at Fig. 1 (left) where the full
scheme is shown and where Z1 = R1 ‖ Rc ‖ Cc ≈ R1 ‖ Cc, Zd = Rd ‖ Cd and Zs = Rs ‖ Rc ‖ Cc ≈ Rs ‖ Cc.
We easily obtain for the differential input voltage

−Vd =
Z1 ‖ (Zd + Zs)

R2 + Z1 ‖ (Zd + Zs)

Zd

Zd + Zs

=
Z1Zd

R2(Z1 + Zd + Zs) + Z1(Zd + Zs)
.

After elementary but tedious manipulations, and considering that Rs is much smaller than any other resis-
tance and can be neglected, we obtain the equation providing the poles:

s2R1R2RdRs(2CdCc + C2
c ) + sR1R2Rd(Cd + Cc) +R1R2 +Rd(R1 +R2) = 0,

giving a low-frequency pole at

s ≈ −R1R2 +Rd(R1 +R2)

R1R2Rd(Cd + Cc)
≈ − 1

R1(Cd + Cc)
.

1.3
Representing resistor noise via their current sources, we can group them into two sources at the OA input,
having values

S+

I = SI +
4kBT

Rs

= 9× 10−24 + 1.6× 10−18 ≈ 1.6× 10−18 A2/Hz;

S−

I = SI +
4kBT

R1

+
4kBT

R2

= 9× 10−24 + 1.6× 10−21 + 1.6× 10−23 ≈ 1.6× 10−21 A2/Hz.

Note the low current noise of the OA, much smaller than the resistor contributions. The final PSD becomes
then:

SVo
= (SV + S+

I R
2
s)

(

1 +
R2

R1

)2

+ S−

I R
2
2 = (10−18 + 1.6× 10−22)1012 + 1.6× 10−15 ≈

(

100 nV/
√
Hzi

)2

,
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Figure 1: Left = Full scheme for Gloop calculation. Right = Possible scheme for Vcm compensation.

dominated by the voltage noise of the OA. Considering a closed-loop bandwidth of 100 kHz, we obtain the
rms noise:

√

V 2
o = 10−7

√

π

2
105 ≈ 40 µV.

1.4
The easiest solution is probably to buffer Vcm and subtract it from the output. A possible scheme is outlined
in Fig. 1 (right). Note that the transresistance gain is now exactly Rs(R2/R1).

Problem 2

2.1
The LIA input signal amplitude is

x(t) = Vr

Ct − Cr

C
= Vr

∆C

C
,

while the (unilateral) input noise PSD is

Sx = SV

(

1 +
Cr + Ct

C

)2

≈ K

f

(

1 +
2Cr

C

)2

,

leading to
(

S

N

)

=
Vr∆C

2Cr +C

√

fr
2KBWn

,

where fr is the reference frequency. The output signal is controlled by the time constant of the LIA LPF. If
the signal is to be stable in 10 ms, the time constant must be smaller than about 2 ms, so let’s take it to be
τ = 1 ms, i.e., BWN = 1/4τ = 250 Hz. We then get fr ≈ 101 Hz. However, fr must be significantly larger
than the LPF bandwidth (160 Hz) for it to reject the harmonics at 2fr, so it is wise to raise it to – say –
1.5 kHz.

2.2
The offset voltage is a DC value and does not affect the measurement (unless it saturates the stage, which
is not our case). The LIA input noise PSD due to the OA current noise is instead

Sx = SI

1

(ωC)2

and it is negligible if

SI

(2πfrC)2
≪ K

fr

(

1 +
2Cr

C

)2

⇒ SI ≪ K(2Cr + C)24π2fr ≈ 10−28 A2/Hz.

Note that this means
√

SI = 10 fA/
√

Hz; a low-noise CMOS OA is required. The requirement on the flicker
noise simply means that the noise corner fequency must be lower than fr.



2.3
The input voltage to the LIA is now

x(t) =
(Vr +∆V )(Cr +∆C)− VrCr

C
≈ Vr∆C + Cr∆V

C
,

generating an extra contribution. We must therefore have

Cr∆V ≪ Vr∆C ⇒ ∆V ≪ Vr

∆C

C
= 0.2 mV.

A good precision is hence required. Note that this error can be measured and subtracted if a precisely known
test capacitor is available. The problem becomes then – as usual – the drift in ∆V .

2.4
The current flowing into the resistor Rt generates an input signal of amplitude Vr/ωrCRt that is out of phase
by −90◦ with respect to the modulated current, and will not generate any error on the signal! However,
such resistor will also contribute to the noise, degrading S/N . If we describe the resistor noise via its current
source (placed in parallel to the current noise of the OA), we can exploit the result in 2.2 and obtain:

4kBT

Rt

≪ 10−28 ⇒ Rt ≫ 160 MΩ.

The same considerations for the noise hold for R. When accounting for the signal, instead, the transfer
function becomes:

T (s) =
s∆CR

1 + sCR
,

and we must now set

ωrCR ≫ 1 ⇒ R ≫ 1

2πCfr
≈ 200 MΩ.

When we have both resistors in place, the transfer function to the LIA input becomes

T (s) =
R

Rt

1 + s∆CRt

1 + sCR
,

and we get once again errors in magnitude and phase. In principle, the simplest solution is just to set

ωrCR ≫ 1 ⇒ R ≫ 1

2πCfr
≈ 200 MΩ,

which means that we can neglect the “1” at the denominator and fall back to the first case, with no effect
on the signal and no condition on Rt.

In reality, however, things a just a bit more complicated because of delays. If we account for all propagation

delays and adjust the phase of the LIA reference to get the maximum output, as is usually done, the output
signal will be related to the magnitude of T (jωr), and we must now include the error at the numerator,
setting:

ωr∆CRt ≫ 1 ⇒ Rt ≫
1

2π∆Cfr
≈ 1 TΩ.

The value can be somewhat reduced by increasing the modulation frequency.


