
Electronics – June 21 2018 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is a composite amplifier. Component values are R1 = R2 = 10 kΩ, C = 680 pF.
The OA is a low-power amplifier with Ao = 100 dB and GBWP = 40 kHz.

1. Find the (ideal) gain of the stage.

2. Discuss the stability of the circuit as a function of the gain G.

3. Compute the output rms voltage noise considering the equivalent voltage noise sources for OA and G,
√

SV = 100 nV/
√
Hz. Assume G = 1 for simplicity.

4. Discuss the impact of the input parasitic capacitance Ci of the OA on the circuit stability (consider
G = 1 as ideal).

Problem 2
A sensor produces rectangular pulses with amplitude A and duration T ≈ 10 µs. The signal is fed into a
preamplifier with input white noise with bilateral PSD λ and then to a gated-integrator.

1. Compute the output S/N neglecting the effect of the amplifier bandwidth.

2. The amplifier has a bandwidth BW ≈ 80 kHz. Write the correct expression for the new S/N , then
find approximated values for the integration limits and compute the resulting S/N . Consider the noise
as still white.

3. Evaluate the effect of the amplifier BW on noise. To ease your calculation, use

∫ K

0

e−x(K − x)dx =

K − 1 + e−K .

4. With reference to the previous point, an optimum filter is put in place of the GI. Find the value of
S/N .

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by June 28th Mark registration: Tuesday, July 3rd



Solution

Problem 1

1.1
We begin the solution by noting that the circuit is very similar to what proposed in the last exam test, with
the input applied to the inverting input of the OA rather than to the non-inverting one.
The voltage at the output of the OA is simply Vo/G, because of the presence of the gain stage G. The
current balance at the inverting input of the OA reads then:

Vi

R1

+
Vo

R2

+ sC
Vo

G
= 0 ⇒ Vo

Vi
= −R2

R1

1

1 + sCR2/G
.

We have then an amplifier with a gain of −1 and a bandwidth of G/2πCR2.
Before proceeding, it is instructive to interpret this relation in view of feedback theory, considering the outer
loop (OA is ideal). Its ideal gain is −R2/R1, obtained by bringing G to infinity. The outer loop gain is
instead −G/sCR2 from which the above equation follows.

1.2
We break the loop at the output of the OA and easily obtain the voltage at the inverting input of the OA as

V − = Vs
R1 ‖ R2

R1 ‖ R2 +
1

sC

+GVs

R1 ‖
1

sC

R1 ‖
1

sC
+R2

= Vs
GR1

R1 +R2

1 + sCR2/G

1 + sC R1 ‖ R2

.

Considering that R1 = R2, we eventually get

Gloop = −A(s)
G

2

1 + sCR/G

1 + sCR/2
.

For G = 2 we have pole-zero cancellation and the system is stable. For G < 2 the zero introduced by the
feedback network comes before the pole and stability is also ensured. For G > 2 the system could have issue
as the pole comes before the zero. Also, please note that in this case the 0dB frequency can become larger
than GBWP , which is to be avoided. It is then wise to maintain G ≤ 2. Bode diagrams are plotted in Fig. 1
for G = 1, G = 2 and G = 10.

1.3
In the general case, we can write the following current-balance equation for the inverting node of the OA
(see Fig. 2, left):

Vn1

R1

+
Vn1 − Vo

R2

+ sC

(

Vn1 − Vn2 −
Vo

G

)

= 0,

which, in our case (G = 1;R1 = R2 = R) leads to

Vo = 2
1 + sCR/2

1 + sCR
Vn1 +

sCR

1 + sCR
Vn2,

where the pole position is fp = 1/2πCR ≈ 23.4 kHz. We must then consider the effect of the real transfer,
that adds a pole at f0dB ≈ GBWP/2 = 20 kHz (look at Gloop for G = 1. In reality, pole and zero are very
close and the actual crossing will take place somewhere between 20 and 40 kHz). For Vn1 we have two poles
and one zero, all fairly close, and we can just consider the lowest. For Vn2 the situation is more complex, as
a unity transfer holds even beyond f0dB (set to zero the output of the OA and see!). So, this noise is actually
limited by the buffer stage. If we ascribe it the same GBWP as the OA, we finally have:

V 2
o ≈ 4SV1

π

2
f0dB + SV2

π

2
(GBWP − fP ) ≈ (35 µV)2 + (16 µV)2 ≈ (39 µV)2.
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Figure 1: Bode plots of the loop gain for different values of G. Dashed lines = asymptotic diagrams. Solid
lines = real diagrams.

1.4
The new value of Gloop is easily obtained by replacing R1 with R1/(1 + sCiR1) in the expression derived in
1.2. Considering then R1 = R2 = R and G = 1 we obtain:

Gloop = −A(s)

2

1 + sCR

1 + s(C + Ci)R/2
.

Ci lowers the pole position, but its effect is negligible unless it becomes comparable with C = 680 pF. Since
typical values for the input capacitances of OAs are of the order of one pF or so, we can safely neglect its
effect.

Problem 2

2.1
The obvious choice is to integrate over the entire pulse duration (this is indeed the optimum filter), obtaining:

(

S

N

)

=
A√
λ

√
T .

2.2
The pole of the amplifier affects both signal and noise. We neglect the effect of noise and consider just the
modifications of the signal. The rectangular pulse now has exponential leading and trailing edges (Fig. 2,
right) with time constant τ = 1/(2πBW ) ≈ 2 µs, and the integration interval should be modified to account
for the new signal shape. With the notation in the figure, we have:

S

N
=

A√
λ

∫ T

TG1

(

1− e−t/τ
)

dt+ (1− e−T/τ )

∫ TG2

0

e−t/τdt

√
T − TG1 + TG2

≈ A

√

τ

λ

xT − x1 − e−x1 + 1− e−x2

√
xT − x1 + x2

,

where x1 = TG1/τ , x2 = TG2/τ , xT = T/τ = 5 and we have neglected the terms e−xT . Considering that for
the case of exponential signals the optimum integration time is usually comparable to the time constant, we
can apply the same approximation here and set TG1 ≈ TG2 ≈ τ , i.e., x1 ≈ x2 ≈ 1 (we are basically shifting
the integration time by τ). With these values we eventually get

S

N
= A

√

τ

λ

xT + e−xT − e−1 − e−1

√
xT

= 1.91 A

√

τ

λ
,

which amounts to a reduction of about 15% from the previous result. The optimization is briefly discussed
in the Appendix.
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Figure 2: Left: Scheme for noise calculation. Right = filtered pulse and integration time

2.3
The output noise now has an exponential autocorrelation

Rnn(γ) =
λ

2τ
G2e−|γ|/τ ,

and the mean square value of the output noise becomes

n2 =

∫

Rnn(γ)kwtt
(γ)dγ,

where kwtt
(γ) is the time correlation of the weighting function, i.e., a well-known symmetric triangular

function. We then have

n2 =
λG2

τ

∫ TG

0

e−γ/τG2

GI(TG − γ)dγ = λG2G2

GIτ

∫ K

0

e−x(K − x)dx,

in which K = TG/τ . The result now becomes

n2 = λG2G2

GI

(

TG − τ + τe−TG/τ
)

.

If we still consider x1 ≈ x2 ≈ 1, i.e., TG ≈ T , the output noise is now reduced with respect to the white
noise approximation by a factor of about 1/5, i.e., 20%.

2.4
Similarly to what discuss in the last exam test, the output of the whitening filter would be a signal plus
white noise, which is exactly the condition discussed in 2.1. The result of the optimum filtering is then what
already obtained there.

Appendix
By setting ∂(S/N)/∂x1 = ∂(S/N)/∂x2 = 0 to the equation in 2.2, it is easy to obtain the condition

e−x1 + e−x2 = 1,

from which S/N can be rewritten as

S

N
= A

√

τ

λ

xT − x1
√

xT − x1 − ln(1− e−x1)
,

which unfortunately cannot be optimized analytically. Numerical results yield an optimum value x1 ≈ 0.54,
i.e., x2 ≈ 0.87.


