
Electronics – July 20 2018 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is an improved Howland current source. Component values are R = 100 kΩ.
The CMOS OA has Ao = 120 dB and GBWP = 1.5 MHz.

1. Find the condition (and set the values) on R1, R2 and R3 that makes the circuit an ideal current source.
Hint: IO must not be dependent on ZL, so find the expression of IO and zero the term multiplying ZL.

2. Compute the DC output impedance of the current source.

3. Compute the output current noise PSD considering the equivalent voltage noise sources
√

SV =
40 nV/

√
Hz and

√

SI = 30 fA/
√
Hz.

4. Find the expression of the ideal output impedance when the matching condition of 1.1 is not met.
Hint: simply use and make sense of the result of 1.1!

Problem 2
A sensor produces periodic exponential pulses with amplitude A ≈ 10 µV and time constant T ≈ 1 µs,
affected by white noise with bilateral PSD λ = 10−14 V2/Hz. A boxcar averager is used to achieve S/N ≥ 10.

1. Find a set of the BA parameter values (TC , TF , integration window) that satisfies the requirement on
S/N .

2. Find the value of the pulse repetition rate fp that allows to complete the measurement in a time
TM = 10 s.

3. With reference to the previous requirement on TM , find the minimum value of fp (and corresponding
values of the BA parameters). Remember that the signal is not constant and use justified approxima-
tions.

4. An input LF noise has exponential autocorrelation Rnn(τ) = n2e−|τ |/Tn , with Tn ≫ 1/fp. Find the
expression of the output rms noise (use the weighting function time correlation and remember that
TF ≫ TC).

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by July 26th Mark registration: Friday, July 27th



Solution

Problem 1

1.1
If we call V1 the output voltage of the OA, we have V − = V + = V1/2. Since IoZL is the voltage at the
R2-R3 midpoint, we write the KCL at such node as

V1 − IoZL

R3

+
V1/2 − IoZL

R2

= Io ⇒ Io

(

1 +
ZL

R2

+
ZL

R3

)

=
V1

2

(

1

R2

+
2

R3

)

.

To eliminate V1, we write the KCL at the non-inverting input of the OA, that can be reshaped as:

V + =
V1

2
= Vi

R2

R1 +R2

+ IoZL
R1

R1 +R2

.

Substituting into the first equation, we obtain:

Io

(

1 +
ZL

R2

+
ZL

R3

− ZLR1

R1 +R2

(

1

R2

+
2

R3

))

= Vi
1

R1 +R2

(

1 +
2R2

R3

)

.

The term multiplying ZL (that ust be zeroed) is

1

R1 +R2

+
1

R3

(

1− 2R1

R1 +R2

)

= 0 ⇒ R1 = R2 +R3,

giving

Io =
Vi

R3

.

We can take R1 = 101 kΩ, R2 = 100 kΩ and R3 = 1 kΩ, to maximize the transconductance.

1.2
The matched circuit is an ideal current source, i.e., with infinite output impedance. We remove ZL and
easily obtain:

ZOL = (R1 +R2) ‖ R3 ≈ R3 Gloop = −A(s)

2
,

from which, at low frequencies:
Z = ZOL(1−Gloop(0)) = 500 MΩ.

1.3
The output current is independent of ZL, so we pick the easiest case, i.e., ZL = 0. The relative circuit is
shown in Fig. 1, left. The resulting transfers are:

Io =
2Vn

R3

+ I+n

(

R1

R1 +R2

+
2(R1 ‖ R2)

R3

)

+ I−n
R

R3

= Vn
2

R3

+ I+n
R1

R3

+ I−n
R

R3

.

The PSD becomes then

√

SIo =
√

6.4× 10−21 + 9.2× 10−24 + 9× 10−24 ≈ 80 pA/
√
Hz.

Note that the OA current noise is negligible, not surprising in a CMOS OA. Furthermore, resistor noise is
nearly 40 pA/

√
Hz (for R = R2 ≈ R1), one order of magnitude larger than the OA current noise and with

almost the same transfer. However, this will not affect significantly the result, as the toal noise is mainly
determined by the OA voltage noise. The current noise of R3 flows directly into the output and its value is
about 8× 10−24 A2/Hz, again negligible.
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Figure 1: Left = Scheme for noise calculation. Right = Input (red) and output (blue) signals of the BA in
the equivalent time.

1.4
The final expression of IO in 1.1 can be written as:

Io

(

1 +
ZL

Zo

)

= GmVi ⇒ Io = GmVi
Zo

Zo + ZL
,

from which it is obvious that Zo is indeed the output impedance of the stage (think of the Norton equivalent
of the current source). With simple rearrangements, its expression becomes

Zo =
R3(R1 +R2)

R2 +R3 −R1

.

Note that this is the actual value of the impedance that you get, because of tolerances in resistor values.

Problem 2

2.1
The simplest choice is to keep TC much shorter than T and integrate synchronously with the pulse edge, so
that the final boxcar signal will reach the value of A. S/N is hence given by:

S

N
=

A√
λ

√

2TF ≥ 10 ⇒ TF ≥ 50
λ

A2
= 5 ms.

If we take – say – TC = 50 ns and TF = 5 ms, we have a number of equivalent samples NC = 2× 105.

2.2
The total number of pulses processed over the measurement time TM is obviously fpTM . The corresponding
“equivalent time” over which the switch is closed is then fpTMTC , which must be enough to fully charge the
capacitor. Since full charge takes place in about 5 time constants, we then set

fpTMTC = 5TF ,

which returns fp = 50 kHz.



2.3
The minimum value of fp corresponds to the maximum single-pulse S/N . This is given by

(

S

N

)

sp

=

∫ TC

0

Ae−t/T dt

√
λTC

= A
T
(

1− e−TC/T
)

√
λTC

= A

√

T

λ

1− e−x

√
x

,

where x = TC/T cannot be too large or too small. A reasonable choice is hence x ≈ 1, i.e., TC = T = 1 µs.
TF can then be found from the expression of S/N :

(

S

N

)

=

(

S

N

)

sp

√

2TF

TC
≥ 10 ⇒ A(1 − e−1)√

λ

√

2TF ≥ 10 ⇒ TF ≥ 12.5 ms,

which gives

fp =
5TF

TMTC
= 6.25 kHz.

The actual maximum is achieved for x ≈ 1.26, leading to TF = 15.5 ms and fp = 6.14 kHz, not far away
from the approximated result.
A slightly different approach would be to think in terms of the behavior in the equivalent time, where BA
behaves as an R−C filter. Within this reference, the non-constant input signal is shown in Fig. 1, right (red
curve). The R−C filter with TF ≫ TC will reach the average signal value (light-blue curve; in reality there
are small oscillations that are negligible, blue curve in the figure), given by:

VC =
A

TC

∫ TC

0

e−t/T dt = A
T

TC

(

1− e−TC/T
)

.

The expression for S/N becomes then:

S

N
= A

1− e−x

x

√

2TF

λ
≥ 10.

Since TF = fpTMTC/5 = fpTMTx/5, we eventually get

1− e−x

√
x

√

fp ≥
10

A

√

5λ

2TMT
,

which is exactly the same equation obtained previously.

2.4
To compute the output rms noise we need the time correlation of the weighting function w(t, τ), which
is made up of a series of (approximately) triangular pulses with basis 2TC and amplitude decreasing with
e−TC/TF , leading to

n2
out =

∫

Rnn(τ)kwtt(τ)dτ =
1

2TF

∑

∫

Rnn(τ − kTp)e
−|k|TC/TF tri(TC),

where tri(TC) is the triangular function of unit amplitude and ±TC base. Because of the slow variation of
Rnn we obtain (assuming unity gain for the BA)

n2
out ≈

1

2TF

∑

k
Rnn(kTp)e

−|k|TC/TF TC = n2
in

TC

2TF

∞
∑

−∞
k
e
−|k|

(

Tp

Tn
+

TC
TF

)

.

From the expression for the sum of the geometric series, and recalling that the term in k = 0 must be counted
only once, we get

n2
out ≈ n2

in

TC

2TF

(

2

1− e
−
(

Tp

Tn
+

TC
TF

) − 1

)

≈ n2
in

1

1 + TP

Tn

TF

TC

.

Obviously, significant noise reduction occurs only if there is no strong correlation over the successive pulses.


