
Electronics – January 23 2018 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is a transresistance amplifier for a floating current source and differential output.
The amplifiers have Ao = 120 dB and pole at 1 Hz.

1. Find the (ideal) gain of the stage.

2. Repeat the previous calculation accounting for the finite gain of the OAs.

3. To avoid common-mode problems, the non-inverting inputs of OA2 is now grounded. Compute the
output rms voltage noise considering the OA equivalent voltage noise sources

√

SV = 10 nV/
√
Hz.

4. The (grounded) circuit is modified by switching the R connections from one output node to the other.
Apart from the sign of the output, does this affect any other performance?

Problem 2
A signal approximately triangular in shape (right Figure) is affected by a high-frequency noise n2

x having
correlation time Tn ≈ T/20. To acquire the signal amplitude, a digital filter is employed.

1. Two samples are taken and data are added. Pick the best value of the sampling times and write the
expression of the resulting S/N .

2. To improve S/N , n + 1 samples are now added. Find the expression of the output S/N (hint: write
the signal for n = 0, 1, 2, ... and work out the general law).

3. What is the best choice for n in the previous point?

4. A second filter, equal to the first, is now cascaded. Find the new optimum values of n and S/N .

Question
Discuss the discrete-time equivalent of the GI and BA filters and their performance.

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by January 26th Mark registration: Monday, Jan 29th



Solution

Problem 1

1.1
It is easy to see that current Ii flows from one resistor R to the other, so that the output voltage is

Vo = 2RIi.

Note that the solution could also be reached via the half-circuit approach, grounding the middle node between
the two R1 resistors.

1.2
A simple solution would be to amend the ideal gain by the factor 1/(1 − 1/Gloop), but the calculation of
the loop gain does not seem straightforward in this case (both OAs are intertwined in two feedback loops).
Therefore, we first proceed with standard calculations and postpone the discussion. Calling V1 and V2 the
two output nodes, we can easily label the OA input nodes as in Fig. 1 (left), from which we can write:

V1 = A(s)

(

V2 + IiR−
V1

2
−

V2

2

)

V2 = A(s)

(

V1 − IiR−
V1

2
−

V2

2

)

which lead to

V1 = −V2 =
IiR

1 +
1

A(s)

.

An interpretation of this expression can be provided if we compute the differential loop gain, given the nature
of the scheme: we break both loops at the outputs of the OAs and apply a differential signal, computing the
differential output. It is easy to see that we get Gloop = −A(s). Of course, we could also use the half-circuit
approach.

1.3
Considering that the differential input voltage of the OAs must be zero, we immediately get

Vn2 =
V1 + V2

2
= V2 + Vn1 ⇒

{

V1 = Vn1 + Vn2

V2 = −Vn1 + Vn2,

from which Vo = V1 − V2 = 2Vn1 ⇒ SVo
= 4SV = 4 × 10−16 V2. Note that Vn2 appears as a common-

mode signal and is rejected by the differential output. Just as a reference, we add here the current noise
contribution, which is

Vo = 2I+n1R+ (I−n1 + I−n2)R ⇒ SVo
= 6SIR

2 = 6× 10−16 V2,

where we have taken
√

SI = 1 pA/
√
Hz and R = 10 kΩ (this was originally part of the question, but you

were eventually spared). Considering that the loop gain is −A(s), as obtained at the previous point, we then
get

V 2
o = SVo

π

2
GBWP ≈ (40 µV)2

in total, of which (16 µV)2 are due to the voltage noise and (24 µV)2 to the current noise.

1.4
Swapping the R connections changes the sign of the feedback, leading to a positive feedback and to instability.
This can be seen by – say – computing the loop gain of OA1.
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Figure 1: Left: Circuit for noise calculations when Rs = ∞. Right = weighting function when one or two
cascaded filters are considered.

Problem 2

2.1
It is wise to take the first sample at t = 0, when the signal is maximum. The second sample is taken at
t = ts and the output signal becomes

y = A+A

(

1−
ts
T

)

= A

(

2−
1

Ns

)

,

where we have defined Ns = T/ts. If the output noise samples are uncorrelated, we get n2
y = 2n2

x, hence:

(

S

N

)

y

=
A

√

n2
x

2−
1

Ns√
2

.

To maximize S/N , we pick ts = Tn, i.e., Ns = 20. The improvement in S/N with respect to a single sample
is about 1.38.

2.2
Following the previous line of thought, the n+ 1 samples taken at t = 0, t = ts, t = 2ts and so on give the
following output signal:

n = 0 ⇒ A

n = 1 ⇒ A+A

(

1−
ts
T

)

= A

(

2−
1

Ns

)

n = 2 ⇒ A

(

2−
1

Ns

)

+A

(

1−
2ts
T

)

= A

(

3−
3

Ns

)

n = 3 ⇒ A

(

3−
3

Ns

)

+A

(

1−
3ts
T

)

= A

(

4−
6

Ns

)

n ⇒ A

(

n+ 1−
n(n+ 1)

2Ns

)

.

The output noise is obviously n2
y = (n+ 1)n2

x, so that

(

S

N

)

y

=
A

√

n2
x

n+ 1−
n(n+ 1)

2Ns√
n+ 1

=
A

√

n2
x

√
n+ 1

(

1−
n

2Ns

)

.



2.3
The optimum choice can be approximately guessed without calculations, by simply noting that the filter is
the discrete-time analogous of a gated integrator, whose optimum gate time is 2/3 of the triangular signal
width. This means that we expect to have nopt ≈ 2Ns/3 = 12− 13.
Let’s carry out the calculations, assuming a continuous range for n. We get:

∂

∂n

(

S

N

)

y

= 0 ⇒ nopt =
2

3
(Ns − 1).

for Ns = 20 we have nopt = 12.67 → 13, which is in good agreement with the expectations. Note that
the solution indeed tends to 2Ns/3 for large values of Ns (i.e., for shorter noise correlation time). The
improvement in S/N is now about 2.43.

2.4
We must understand what is the output of the two cascaded filter, so let’s look at the output of the first (y)
and second (z) filter after the first, second,. . .nth sample:

t = ts ⇒ y(ts) = x(ts) ⇒ z(ts) = x(ts)

t = 2ts ⇒ y(2ts) = x(ts) + x(2ts) ⇒ z(2ts) = 2x(ts) + x(2ts)

t = 3ts ⇒ y(3ts) = x(ts) + x(2ts) + x(3ts) ⇒ z(3ts) = 3x(ts) + 2x(2ts) + x(3ts)

. . .

It is clear that the output of the second filter is a linearly-weighted average of the input signal. The
combination of the filters amounts then to a weighting function shown in Fig. 1 (right). Clearly, this
represents the optimum weights for the white noise case, matching the shape of the signal. In this case, the
best number of samples is the maximum that allows to retain the white-noise approximation, i.e., n = Ns.
To compute the resulting S/N , we can use the continuous approximation:

(

S

N

)

y

≈
A
√
λ

√

∫ T

0

(

1−
t

T

)2

dt =
A

√

n2
xTn

√

T

3
=

A
√

n2
x

√

Ns

3
.

The resulting improvement is now 2.58.


