
Electronics – February 21 2018 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is used as a low-noise reference for ADCs. Component values are R1 =
1 kΩ, C1 = 4.7 µF, R2 = 750 Ω, C2 = 47 nF. The amplifiers have Ao = 120 dB and GBWP = 1 MHz.

1. Find the (ideal) gain of the stage.

2. Find the loop gains of OA1 and OA2 considering the other OA as ideal.

3. Compute the output rms voltage noise considering the equivalent voltage noise sources
√

SV =
10 nV/

√
Hz plus a flicker noise component on SV2

, with noise corner frequency of 1 kHz.

4. The circuit is used to drive a large capacitive load. Discuss the role of R2 and C2.

Problem 2
A sensor produces exponential pulses with amplitude A, time constant τ = 10 µs and repetition frequency
fr ≈ 50 kHz (right figure). A white noise with bilateral PSD λ is superimposed onto the pulses.

1. Consider a single pulse (no repetition). Design a simple LPF and compute the resulting S/N .

2. Consider the pile-up error introduced by the repetitive pulses (dashed line). Insert the correct block –
a) or b) – and find the component values to reduce such error below 1%� (hint: work in the frequency
domain). Re-design the LPF and comment on the new S/N .

3. An optimum filter is applied in place of the LPF (after block a or b). Find the resulting value of S/N
and discuss the result.

4. The pulse repetition rate is uniformly distributed in time (Poisson random process), with density
γ [s−1]. What is the average value of the pile-up error (hint: the pdf of the inter-pulse arrival time is
γe−γt)?

Question
Describe the compensation techniques for capacitive loading of OAs.

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by February 23th Mark registration: Monday, Feb 26th



Solution

Problem 1

1.1
We start by computing the output voltage of OA1, Vo1. This is given by

Vo1 = −Vo
1

sC1R1
+ Vi

(

1 +
1

sC1R1

)

,

and this voltage is also present at the non-inverting input of OA2. However, in R2 and C2 flows no current,
so Vo1 = Vo. It is then immediate to note that this equals to Vo = Vi, i.e., the stage behaves as a buffer.

1.2
The calculation is very simple for OA1, as OA2 behaves as a buffer in this case, leading to

Gloop1 = −A(s).

When computing Gloop2, breaking the loop at the OA output, we have V − = Vs and V + = −Vs/sC1R1,
because OA1 is connected as an integrator. This leads to

Gloop2 = −A(s)

(

1 +
1

sC1R1

)

= −A(s)
1 + sC1R1

sC1R1
.

Both loops are obviously stable. A discussion of the signal transfer from the viewpoint of the feedback theory
can be found in the Appendix.

1.3
The noise source of OA1 is subjected to the same transfer as the input signal, i.e., SVo

= SV1
. To compute

the output noise due to OA2, we ground the input and easily obtain:

SVo
= SV2

∣

∣

∣

∣

sC1R1

1 + sC1R1

∣

∣

∣

∣

2

.

To compute the output rms voltage noise, we need to consider the poles at GBWP introduced by the OAs,
getting

V 2
o = SV1

π

2
GBWP + SV2

π

2
(GBWP − fp) ≈ (17.7 µV)2,

where fp = 1/2πC1R1 ≈ 34 Hz is the C1R1 pole frequency. The flicker component of the noise of OA2 gives
an additional contribution equal to

V 2
o = K ln

(

GBWP

fp

)

= SV2
fnc ln

(

GBWP

fp

)

≈ (1 µV)2.

1.4
A large capacitive load can lead to instability due to the pole introduced with the output resistance of the
OA. R2 and C2 can compensate the scheme, usually with the addition of a small-value (say, a few Ω) resistor
RC in series to the OA output, resulting in the full scheme of Fig. 1 (left). See class notes for further details.

Problem 2

2.1
A simple choice is to pick the time constant of the LPF to be much smaller than τ , say TF = 1 µs. An
additional constraint could be to not increase the total noise because of the white resistor noise, i.e., to set

4kBTR ≪ 2λ.

The resulting S/N is then
(

S

N

)

=
A

√

λ/2TF

.
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Figure 1: Left: Full circuit for driving large capacitive loads. Right: Bode plot of the transfer functions of
schemes a) and b).

2.2
Let’s first assess the magnitude of the error in pulse amplitude measurement. This is obviously given by the
value of the previous pulse, i.e., Ae−tr/τ , where tr = 1/fr is the pulse separation time. The condition on the
pile-up error becomes then

e−tr/τ < 10−3 ⇒ tr > 3τ ln 10 ≈ 7τ.

In our case, this condition means that τ should be smaller than 2.86 µs, actually being about 10 µs.
We can now look at the two proposed solutions. Their transfer functions are

Ha =
R2

R1 +R2

1 + sCR1

1 + sC(R1 ‖ R2)
Hb =

1 + sCR2

1 + sC(R1 +R2)
,

and are basically pole-zero couples where fz < fp (a) or fz > fp (b), as shown in Fig. 1 (right). The Laplace
transform of the input single-pulse signal is a single-pole function

Vi(s) = A
τ

1 + sτ
,

so that we have

Vo(s) ∝ A
1

1 + sτ

1 + sτz
1 + sτp

.

A good idea is to have a pole-zero cancellation, i.e., set τz = τ = 10 µs, which leaves us with a single-pole
function, i.e., an exponential similar to the input signal but with time constant τp. To reduce the pile-up,
we can then set τp < tr/7 = 2.9 µs → 2 µs, meaning that we need solution a).
The actual output signal becomes now

Vo(s) = Aτ
τp
τz

1

1 + sτp
= A

τp
1 + sτp

⇒ vo(t) = Ae−t/τp ,

while the output noise is

v2o = λ
π

2

(

1

25
fz + fF − fp

)

≈ λ
π

2
fF

where fF is the new LPF pole, say, fF = 10fp. This means TF = τp/10 = 0.2 µs. S/N is smaller than in
2.1, but the pile-up error is gone.

2.3
Because of block a), the noise is no longer white and a whitening filter should be applied, but this would do
nothing but bring us back to the original signal with white noise! So, we can just solve the optimum filter
problem for the initial pulse, but first we must note that now we are back to the pile-up issue! This means
that we must limit the integration time to tr = 20 µs. We have then

(

S

N

)

≈ A√
λ

√

∫ tr

0
e−2t/τdt = A

√

τ(1− e−2tr/τ )

2λ
.

The solution is approximate, as we are neglecting the pile-up contribution.
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Figure 2: Left: Simplified circuit used in calculations. Right: Bode plot of the gains of the circuit with ideal
OAs.

2.4
If a pulse arrives a time t after a previous one, the error in its estimate is Ae−t/τ . Since this event happens
with pdf γe−γt, the average value of the error is

ǫ =

∫

∞

0
Ae−t/τγe−γtdt = Aγ

∫

∞

0
e−(γ+1/τ)dt = A

γτ

1 + γτ
.

The relative error is
γτ

1 + γτ
, conveying the obvious result that to reduce the pile-up error we must have

γτ ≪ 1, i.e.,
1

γ
≫ τ : the average pulse separation time must be much longer than τ .

Appendix
We – briefly – discuss here the complete behavior of the circuit, and particularly the role of the different
loops. We begin by considering ideal OAs and note that R2 and C2 do not carry any current and can be taken
out of the circuit, so that the second stage behaves as a follower with gain of 1. It is now easy to see that
the external loop has a gain of −1/sτ1 where τ1 = C1R1, with 0 dB frequency located at fp = 1/(2πτ1). So,
what is happening beyond this frequency? What is the open-loop and ideal gain? Let’s start with computing
Gopen: we open the loop and ground the feedback connection from the output to R1 and obtain

Gopen =
1 + sτ1
sτ1

.

The ideal gain now poses a problem: its definition is the gain obtained with infinite loop gain, while here
the loop gain is −1/sτ1, definitely not infinite! How can we make the loop infinite? An idea is to look at
Fig. 2 and replace the buffer stage with a gain stage with infinite gain. This means that V1 must be always
zero and the output becomes (keep in mind that the input pins of the OA must have the same potential)

Gid = 1 + sτ1.

The resulting loop gain (minimum between Gid and Gopen) is plotted in Fig. 2.
The same exercise can be done for the input noise of OA2, obtaining (calculations are left to the reader, if
any):

Gopen = 1 Gid = sτ1.

We can now discuss the impact of the gain of OA1. This affects of course the loop gain and the open-loop
gain, which now becomes

GOL = G1,
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Figure 3: Left: Bode plot of the gains considering the finite gain of OA1. Right: same, but accounting also
for OA2.

where G1 is the real transfer of the integrator stage, given by

G1 = G1
OL

1

1−G1
loop

= A1
1

1 +A1
sτ1

1 + sτ1

.

Please note that these are local quantities, related to the first stage. Considering single-pole OAs with
A(s) = A0/(1 + sτ) we obtain:

GOL =
A0

(1 + sτ)

(

1 +
sτ1A0

(1 + sτ)(1 + sτ1)

) =
A0(1 + sτ1)

(1 + sτ)(1 + sτ1) + sτ1A0
≈ A0

1 + sτ1
1 + sτ1A0 + s2ττ1

.

We can find approximate pole positions with the usual techniques seen in the class, obtaining:

fp1 =
1

2πA0τ1
=

fp
A0

fp2 =
A0

2πτ
= GBWP.

The new Bode plot is reported in Fig. 3 (left). It should be mentioned that OA1 does not affect Gid in this
case (not shown).
Finally, we can assess the role of OA2. The connection as a buffer leads to a transfer given by A2/(1+A2) =
1/(1 + sτ0), where the pole due to τ0 is at GBWP. This of course shows up in GOL, leading to a second pole
at GBWP (and not affecting Gid). The very final Bode plot is in Fig. 3 (right).


