
Electronics – June 20 2019 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is a transresistance amplifier. Component values are R = 11 kΩ, R1 = 11.8 kΩ,
C1 = 105 nF. The OAs have Ao = 80 dB and GBWP = 0.5 MHz.

1. Find the expression of the closed-loop gain.

2. Evaluate the phase margin of the feedback circuit.

3. Compute the output rms noise voltage considering the equivalent noise source of the OA
√
SV =

14 nV/
√
Hz and the resistors noise (4kBT ≈ 1.646× 10−20 J).

4. Consider the case in which the two OAs have different GBWP s and discuss the impact on stability.

Problem 2
A discrete-time filter with sampling time ts is used to measure the amplitude of a constant signal, taking
alternate measurements of noise alone (no signal) and of signal (plus noise), subtracting the former from the
latter and averaging over N signal pulses.

1. Compute the weighting function and its time correlation.

2. The input noise has an approximately triangular autocorrelation function with correlation time Tn ≈
2ts. Evaluate the output S/N .

3. Consider now the case in which Tn extends over a few samples ns ≪ N and compute the new value of
S/N .

4. Consider a similar filter, but where the N noise samples are collected before the N signal ones. Which
one is better for the noise considered in #2.2 and #2.3? Justify your answers.

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by July 2nd Mark registration: Thursday, July 4th



Solution

Problem 1

1.1
The ideal gain is obviously R. To compute the open-loop gain, we can look at the high-frequency behavior,
where C1 can be approximated as a short-circuit and OA2 becomes a buffer. If we disconnect the outer loop,
we obtain

GOL = −RA1(s)A2(s)

The closed-loop gain has then two poles when |A(s)|2 = 1, i.e., at GBWP .

1.2
We apply a test voltage VT at the output of OA2, obtaining

V + = −A1(s)VT ; V − =
sC1R1

1 + sC1R1
VT ,

which means

Gloop = −A2(s)

(
sC1R1

1 + sC1R1
+A1(s)

)
≈ −A(s)

A0 + sC1R1A0 + s2C1R1τ

(1 + sτ)(1 + sC1R1)
,

where we considered A(s) = A0/(1 + sτ) and A0 ≫ 1. Approximate values of the zeros are

fz1 ≈
1

2πC1R1
fz2 ≈

A0

2πτ
= GBWP.

The loop gain has then two poles at 1/2πτ = 50 Hz and one zero at GBWP = 500 kHz, meaning that the
system is stable, with a phase margin of 45◦.
Of course, all the results could have been obtained by replacing the OA2 feedback loop with its real gain
and considering the outer loop. Please note that the value of Gloop will obviously be different, but the phase
margin remains the same.

1.3
It is easy to see that all noise sources of OA2 give no contribution to the output, as they are inside the global
feedback loop (in other words, the output is set to zero by OA1). The remaining contributions are

SVo = SV + 4kBTR = 1.96× 10−16 + 1.81× 10−16 ≈
(
19.4 nV/

√
Hz

)2
,

which gives an rms output noise:√
V 2
o = 19.4× 10−9

√
π

2
5× 105 ≈ 17.2 µV.

1.4
We can start from the expression for Gloop already obtained in #1.2, which can be written as (remember the
pole-zero cancellation)

Gloop = −A2(s)
A0(1 + sτz1)(1 + sτz2)

(1 + sτ1)(1 + sC1R1)
= − A0

1 + sτ1

A0

1 + sτ2
(1 + sτz2),

where the zero is located at GBWP1. After the two low-frequency poles (and before the zero), the gain
becomes

Gloop ≈
A2

0

s2τ1τ2
⇒ f0dB =

√
GBWP1 GBWP2,

which is halfway between the two values on a log scale. To ensure the phase margin remains higher than
45◦, it is advised to pick GBWP1 < GBWP2.
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Figure 1: Left = weighting function for the case of N = 5. Right = time correlation of the weighting function.

Problem 2

2.1
The weighting function is made up of a series of alternating positive and negative delta functions (Fig. 1,
left for the case of N = 5), and its time correlation has the shape shown in Fig. 1 (right). If we consider a
1/N area of the delta functions (unity gain for signal), the areas of the components of kwtt(γ) are

kwtt(γ) =

2N∑
−2N

k
(−1)k

2N − |k|
N2

δ(γ − kts).

2.2
The output noise is given by

n2
y =

∫
Rxx(γ)kwtt(γ),

and in our case only the central and its first neighboring delta functions give a contribution. The result is
then

n2
y = n2

x

(
2

N
− 2

2N − 1

2N2

)
=

n2
x

N2
,

leading to (
S

N

)
y

=

(
S

N

)
x

N

The noise is weakly correlated over the averaging time and is hence reduced by the average over N samples.

2.3
If Rxx is non-zero over a number of samples ns much smaller than N , we can approximate the area of each
delta function with 2/N , obtaining:

n2
y =

∫
Rxx(γ)kwtt(γ) ≈ n2

x

2

N

ns∑
−ns

k
(−1)k

(
1− |k|ts

Tn

)
.

Taking advantage of the even symmetry, we can only evaluate non-negative terms twice (see Fig. 2, left),
resulting in (remember that TN/ts = ns)

n2
y = n2

x

4

N

(ns−1)/2∑
0

k
1− 2k

ns
−
(
1− 2k + 1

ns

)
= n2

x

4

N

(ns−1)/2∑
0

k

1

ns
= n2

x

4

N

ns + 1

2ns
= n2

x

2

N

(
1 +

1

ns

)
.

We now remember that in our process we have double-counted also the term in k = 0, that amounts to 2/N .
By subtracting this term, we eventually get

n2
y = n2

x

2

Nns
.



Rxx Rxx

γ

{ {{

k=0 1 2 ... Tn=nsts

γ

{ {{

k=1 2 3 ... Tn=nsts

Figure 2: Schemes adopted for noise calculations in #2.3. Red samples = positive ones; blue samples =
negative ones. Left side is for odd ns, right one for even ns.

2.4
In this case we would have N negative delta functions followed by N positive ones. Clearly, the new weighting
function time correlation has the same value in zero, but remains positive until the shift becomes 2Nts/3.
This means that all contributions will be positive and there is no cancellation. The new filter has worse
performance.

Appendix: Brief discussion on #2.3
The shrewed reader will have noticed that in #2.3 we have implicitly assumed an odd value for ns. If however
we had taken an even value, the result would have been (see Fig. 2, right for the summing scheme)

n2
y

n2
x

=
2

N
+

4

N

ns/2∑
1

k
−1 +

2k − 1

ns
+ 1− 2k

ns
=

2

N
− 4

N

ns/2∑
1

k

1

ns
= 0.

This result, though equally correct as the previous one, deserves a short comment: of course, perfect noise
cancellation is not possible, and the zero is a consequence of the equal value for the delta areas. Just for fun,
we carry on the calculations in this case:

n2
y

n2
x

=
2

N
+ 2

ns/2∑
1

k

(
−1 +

2k − 1

ns

)
2N − (2k − 1)

N2
+

(
1− 2k

ns

)
2N − 2k

N2
.

We know that the terms with weight 2N/N2 give zero (this is the previous result) and we drop them,
obtaining

n2
y

n2
x

= 2

ns/2∑
1

k

(
1− 2k − 1

ns

)
2k − 1

N2
−
(
1− 2k

ns

)
2k

N2
=

2

N2

ns/2∑
1

k
2k − 1− (2k − 1)2

ns
− 2k +

(2k)2

ns
=

2

N2ns

ns/2∑
1

k
4k − (ns + 1) =

2

N2ns

(
4
ns

4

(ns

2
+ 1

)
− (ns + 1)

ns

2

)
=

1

N2
.

It is also interesting to note that the previous result for the odd case is exact even if the correct delta values
are used (calculations are left to the reader, if any have reached this point). And, finally, Tn needs not be
an exact multiple of ts: calculations show that in the general case the output noise changes linearly between
the minimum (for the even case) and the maximum (for the odd values) values.


