
Electronics – September 9 2019 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is a filter. Parameter values are C = 47 nF, R1 = 68 kΩ, R2 = 10 kΩ. The OA
has GBWP = 1 MHz.

1. Find the expression of the ideal gain and draw its Bode diagram (hint: evaluate |T (jω)|). What is the
function of the filter?

2. Compute the loop gain and discuss the stability of the circuit.

3. Compute the output rms noise voltage considering the equivalent noise sources of the amplifier
√

SV =
25 nV/

√
Hz and

√

SI = 50 pA/
√
Hz. In the calculations, remember that the noise BW of a transfer

function sτ/(1 + sτ)2 is 1/(8τ).

4. Consider the effect of resistor tolerances and quantify its impact on the attenuation of the filter.

Problem 2
The scheme in the right figure represents a detector sending delta-like current pulses to an (ideal) operational
amplifier, having white voltage and current noise PSDs SV and SI . C is the total input capacitance.

1. Find the optimum S/N (final result, not just the formula, please).

2. Compute the weighting function of the optimum filter and give its expression in the time domain.
Comment on the result.

3. The input pulse must be processed within a time ±TP from its arrival. Find a suitable approximation
for the weighting function and compute the new value of S/N . In the calculations, remember that
∫ ∞

0

sinc2 x dx = π/2,

∫ ∞

0

sinc4 x dx = π/3 and that sin4 x = (4 sin2 x− sin2 2x)/4.

4. Replace now resistor R with an impedance Z(s) and consider also the finite bandwidth of the amplifier.
How does this affect the value of the optimum S/N and its corresponding weighting function?

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by September 12th Mark registration: Monday, Sep. 16th



Solution

Problem 1

1.1
We start with computing the output voltage of the OA as

V ′
o = Vi

(

−1 +
2sCR1

1 + sCR1

)

= Vi
−1 + sCR1

1 + sCR1

.

The output voltage is now (linear superposition between Vi and V ′
o):

Vo = Vi
1

1 + sCR1

+ V ′
o

sCR1

1 + sCR1

= Vi
1 + (sCR1)

2

(1 + sCR1)2
.

We have then two zeroes along the imaginary axis and two real coincident poles at fp = 1/2πR1C = 50 Hz.
The magnitude of the transfer function becomes:

|T (jω)| = |1− (ωCR1)
2|

1 + (ωCR1)2
,

and its Bode diagram is reported in Fig. 1 (left). Note that the asymptotic diagram is constant, but the
actual transfer goes to zero at the frequency fp. This is a so-called notch filter, designed to reject a single
frequency line.

1.2
We ground the input and notice that the two C − R1 blocks have no effect on the loop calculation, that
simply becomes:

Gloop = −A(s)

2
.

The circuit is obviously stable, with phase margin of 90◦ and zero-dB frequency equal to f0dB = GBWP/2 =
500 kHz.

1.3
If we recall once again that the input is grounded during noise calculations, we easily get:

Vo = Vn
2sCR1

1 + sCR1

+ I−n R2

sCR1

1 + sCR1

+ I+n
R1

1 + sCR1

2sCR1

1 + sCR1

.

The first two transfers must account for the additional pole at f0dB, while the last one has a noise bandwidth
equal to (π/4)fp, leading to:

V 2
o = 4SV

π

2
(f0dB − fp) + SIR

2
2

π

2
(f0dB − fp) + 4SIR

2
1

π

4
fp

= 1.96 × 10−9 + 1.96 × 10−7 + 2.31× 10−9 ≈ (0.45 mV)2.

1.4
We need to recompute the output voltage accounting for the different resistor values. If we label R′

1 the
upper R1 resistor and R′

2 the feedback resistor, we follow #1.1 and get

V ′
o

Vi
= −R′

2

R2

+
R2 +R′

2

R2

sCR1

1 + sCR1

=
−R′

2 + sCR1R2

R2(1 + sCR1)

and

Vo

Vi
=

1

1 + sCR′
1

+
sCR′

1

1 + sCR′
1

V ′
o

Vi
=

1 + sCR1

(

1− R′

1
R′

2

R1R2

)

+ s2C2R1R
′
1

(1 + sCR1)(1 + sCR′
1
)

.
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Figure 1: Left = Closed-loop transfer of the filter. Right = optimum weighting function.

Clearly, now the zeroes are no longer on the imaginary axis, meaning that the transfer function will not go
to zero. To evaluate the term in parenthesis at the numerator, we consider the worst case:

R1 → R1(1 + x) R′
1 → R1(1− x)

R2 → R2(1 + x) R′
2 → R2(1− x)

and obtain (see class slides for CMRR calculations in differential amplifiers):

1− R′
1R

′
2

R1R2

= 1− R1R2(1− x)2

R1R2(1 + x)2
≈ 1− (1− 2x)2 ≈ 4x.

At the notch frequency, ωCR1 = 1 and the numerator then becomes nearly

|1 + j4xωCR1 − (ωCR1)
2| = 4x,

while each pole term has a magnitude of 1/
√
2, leading to a value of 2x for the transfer function. As a

reference, with x = 1% we get an attenuation of a factor −20 log(2x) ≈ 34 dB.

Problem 2

2.1
The output signal is (frequency domain):

Vo(f) = QR,

while the output noise PSD is:

SVo
(s) = SV |sCR|2 + SIR

2 ⇒ SVo
(f) = (2πCR)2SV f

2 + SIR
2.

The expression for the optimum S/N for non-white noise is then

(

S

N

)2

opt

=

∫ ∞

−∞

2|Vo(f)|2
SVo

(f)
df =

2Q2

SI

∫ ∞

−∞

df

1 +K2f2
, K2 =

(2πC)2SV

SI
,

where the factor of 2 is due to the fact that SVo
is a unilateral noise PSD. This leads to

(

S

N

)2

opt

=
2Q2

SIK
π =

Q2

C
√
SV SI

.

Of course, the same result could have been obtained by considering a whitening filter (LPF) followed by the
usual optimum filter for the white noise case.



2.2
The optimum weighting function is given by:

|W (f)| = 2|Vo(f)|
SVo

(f)
=

2Q

RSI

1

1 +K2f2
,

whose inverse Fourier transform is (think of the time correlation of an LPF weighting function):

w(0, τ) ∝ e−|τ |/T , T =
K

2π
= C

√

SV

SI
.

This is plotted in Fig. 1 (right). Note that the function is not causal (i.e., it begins before the signal, which
can be solved by adding a delay) and has infinite duration.

2.3
The weighting function can be approximated by a symmetric triangular function with amplitude A extending
from −TP to +TP . The output signal is then

y(t) =

∫

Qδ(τ)w(t, τ)dτ = QAR.

For noise calculation, we consider the frequency domain, where

W (f) = ATP sinc2(πfTP )

and solve for

n2
y =

∫ ∞

0

SVo
(f)|W (f)|2df = SIR

2A2T 2
p

∫

(1 +K2f2) sinc4(πfTp)df.

The integral can be expressed as

1

πTP

∫ ∞

0

sinc4 x dx+
K2

(πTP )3

∫ ∞

0

sin4 x

x2
dx =

1

3TP
+

K2

(πTP )3

∫

(sinc2 x− sinc2 2x)dx,

yielding:
(

S

N

)2

=
Q2

SI

(

TP

3
+ T 2

TP

) <

(

S

N

)2

opt

2.4
The real transfer function of the amplifier stage modifies both signal and noise, but not their ratio as expressed
in #2.1. The same holds for R (note in fact that (S/N)opt does not depend on R). This means that these
factors will not affect the optimum value of S/N .
The optimum weighting function neded to achieve that value of S/N , instead, will be obviously modified. If
we call H(f) the transfer function of the closed-loop amplifier stage, we have then

|W (f)| ∝ 1

|H(f)|(1 +K2f2)


