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Problem 1
The scheme in the left figure is a PT100 RTD signal conditioner. Component values are R1 = 11 kΩ,
R2 = 11.8 kΩ, R3 = 105 kΩ, R4 = 12.4 kΩ, R5 = 3.01 kΩ. The precision CMOS OA has Ao = 110 dB and
GBWP = 2 MHz. Consider the behavior at T = 0◦C.

1. Find the expression of the output voltage. What is the function of R1?

2. Compute the loop gain and find the minimum value of R2 that ensures stability. Consider then a
(differential) input capacitance Ci = 10 pF and evaluate the phase margin.

3. Compute the output rms noise voltage considering the equivalent noise source of the OA
√

SV =
14 nV/

√
Hz and the resistors noise (4kBT ≈ 1.646 × 10−20 J).

4. The RTD resistance is not perfectly linear with temperature: RT = 60.26, 100, 138.5 and 175.84 Ω
for T = −100, 0, 100 and 200◦C. Explain the function of resistor R2 (hint: just evaluate the output.
Please, be quantitative in your answer).

Problem 2
A charge-based sensor outputs delta-like signals Qδ(t) onto a capacitor C. The signal is affected by high-
frequency noise (with triangular autocorrelation) as well as by a slow baseline. To eliminate the latter, a
time-variant filter with a weighting function w(t, τ) is then applied.

1. The filter subtracts two samples, one with the baseline and one with signal + baseline. Consider the
voltage noise only and compute the output S/N .

2. Evaluate the output noise due to SI (consider for simplicity white current noise and a rectangular
approximation of the integral in the frequency domain).

3. The negative delta function is now replaced by a (unit area) gated integrator. Compute the weighting
function in the time domain for the input (current) signal.

4. Compute the (exact!) total output noise of the new filter.

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by January 21st Mark registration: Tuesday, Jan. 22nd



Solution

Problem 1

1.1
The voltage at the inputs of the OA is

V − = V + = Vo

R4

R3 +R4

= kVo,

that is also the voltage at the node before R1, into which no current flows. Via simple superposition we get:

kVo = Vr

R2 ‖ RT

R2 ‖ RT +R5

+ Vo

R5 ‖ RT

R5 ‖ RT +R2

,

from which we obtain

Vo = Vr

R2 ‖ RT

R2 ‖ RT +R5

k −
R5 ‖ RT

R5 ‖ RT +R2

= Vr
R2RT

k(R2R5 +R2RT +R5RT )−R5RT

= Vr
R2RT (R3 +R4)

R2R4RT +R2R4R5 −R3R5RT

R1 is obviously needed for bias current compensation. In fact, resistances seen from the OA inputs are
R4 ‖ R3 and R1 +RT , both equal to approximately 11.1 kΩ.

1.2
The loop gain is easily computed:

Gloop = −A(s)

(

k − R5 ‖ RT

R5 ‖ RT +R2

)

≈ −0.1A(s)

and remains negative if

k >
R5 ‖ RT

R5 ‖ RT +R2

⇒ R2 > (R5 ‖ RT )

(

1

k
− 1

)

= (R5 ‖ RT )
R3

R4

≈ RT
R3

R4

= 847 Ω,

largely satisfied in our case. To consider the effect of Ci, it is wise to just compute the position of the pole
it generates, that is

fp =
1

2πCi(R1 +RT +R3 ‖ R4)
≈ 717 kHz,

larger than the 0dB frequency f0 (= 200 kHz), so stability is not affected. The phase margin is now:

φm = 90◦ − arctan

(

f0
fp

)

≈ 74◦.

1.3
We use current sources for resistor noise and group them into two sources at the OA inputs, having values

S+

In
=

4kBT

R2

+
4kBT

RT

+
4kBT

R5

≈ 1.66 × 10−22 A2/Hz;

S−

In
=

4kBT

R3

+
4kBT

R4

≈ 1.48 × 10−24 A2/Hz,

while the voltage noise of R1 is in series with the OA one (SVn
= SV + 4kBTR1 ≈ 3.77 × 10−16 V2/Hz), as

shown in Fig. 1 (left), where we considered R5 ‖ RT ≈ RT . The output PSD becomes then

SVo
=

S+

In
(RT ‖ R2)

2 + S−

In
(R3 ‖ R4)

2 + SVn

(k −RT /(RT +R2))2
= 1.76×10−16+1.93×10−14+3.99×10−14 ≈

(

244 nV/
√
Hz

)2

,

which, considering a closed-loop bandwidth of 200 kHz, translates into an rms output noise:
√

V 2
o = 244 × 10−9

√

π

2
2× 105 ≈ 137 µV.
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Figure 1: Left = Scheme for noise calculation. Right = Weighting function for the current signal.

1.4
Let’s compute the output voltage with and without R2 for the different temperatures:

T Vo/Vr (no R2) Vo/Vr (with R2)

−100◦C 0.1858 0.1940
0◦C 0.3044 0.3272

100◦C 0.4165 0.4602
200◦C 0.5226 0.5933

From these data we can extract the variation in Vo for a 100◦C temperature difference:

T range ∆Vo/Vr (no R2) ∆Vo/Vr (with R2)

−100 − 0◦C 0.1186 0.1332
0− 100◦C 0.1121 0.1330

100 − 200◦C 0.1061 0.1331

We can see that the scheme with R2 is much more linear! This happens because R2 introduces a small
positive feedback that provides a slighly higher output for high values of RT , compensating its nonlinearity.

Problem 2

2.1
The delta-like signal pulse is integrated by the capacitor, resulting in a step voltage that is sampled and
gives an output signal

Vo =
Q

C
.

while the output noise is obviously two times the input voltage noise, leading to

S

N
=

Q/C
√

2n2
V

=
Q

C

√

Tn

SV

,

where we remember that in a triangular autocorrelation model n2
V = SV /2Tn, as SV is a unilateral PSD.

2.2
In the frequency domain, the current transfer would be

Vo = In
1

sC
W (t, s) ⇒ SVo

=
SI

C2

∣

∣

∣

∣

W (t, f)

2πf

∣

∣

∣

∣

2

,



where
W = 1− ej2πfT ⇒ |W |2 = 2(1 − cos(2πfT )).

We must then compute

V 2
o =

2SI

C2

∫

∞

0

1− cos(2πfT )

(2πf)2
df = SI

T

πC2

∫

∞

0

1− cos x

x2
dx = SI

T

2C2
,

where we have taken as equivalent bandwidth of the function one half of its first zero, i.e., π. The result in
ths case is exact, but please do not take this as a general rule.

2.3
We begin with remembering that w(t, τ) is the response in t to a (current) δ function applied in τ . However,
the current is integrated by the capacitor C (see the Laplace transform of the weighting function computed
in 2.2, W (t, s)/sC), meaning that we have a step voltage at the input of the time-variant filter. The output
can easily be computed and results in the triangular weighting function depicted in Fig. 1 (right). Please
note that the new weighting function w′(t, τ) is the integral (up to t = 0) of w(t, τ), as apparent from the
Laplace analysis.
Note also that this approach can be easily applied to the case in 2.2, resulting in a rectangular weighting
function of amplitude 1/C, which returns the previous result.

2.4
The current noise contribution can easily be computed from

V 2
o =

SI

2

∫

w′2(t, τ)dτ =
SI

2

∫ T

0

( τ

T

)2

dτ =
SI

2

T

3
.

The weighting function for the voltage noise contains a delta function, meaning that the entire input noise
is found at the output, and V 2

o = n2
V . To make this point clear, we can start from

V 2
o =

∫

RV V (γ)kwtt
(γ)dγ,

and note that k must contain a delta at γ = 0. The rest of the integral will give a result dependent on Tn,
much lower than the mean square value. Calculations are left to the reader; the final result for the voltage
noise is

V 2
o = n2

V + n2
V

T 2
n

3T 2
= n2

V + SV
Tn

6T 2
.


