
Electronics – July 19 2019 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is a filter built using transconductance amplifiers with gain gm. Capacitor
values are C1 = 1 µF = 4C2. The amplifiers have gm = 32 mS.

1. Find the expression of the closed-loop gain.

2. Consider the outer loop (i.e., the loop around the first amplifier). What is the minimum value of the
amplifiers bandwidth that ensures stability of the circuit?

3. Compute the output rms noise voltage considering the equivalent noise source of the amplifiers
√

SV =
5 nV/

√
Hz. In the calculations, remember that the noise BW of a transfer function sτ/(1 + sτ)2 is

1/(8τ).

4. Compute the delta function response of the circuit.

Problem 2
A baseline restorer stage has the scheme reported in the right figure.

1. Find the relation between delay time T and gain K so that the step voltage response of the filter has
a finite length.

2. Compute the delta-function response (in time and frequency domains) and its time correlation. In the
latter calculation, neglect for simplicity the exponential decay of the weighting function.

3. The input noise has an exponential autocorrelation Rxx ≈ n2
xe

−|τ |/Tn . Evaluate the output noise
(consider for simplicity K ≈ 1).

4. Consider an input sinusoidal signal. Can we devise a choice for (constant) parameters T and K that
gives an output sinusoidal signal with two times the frequency of the input one?

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by July 24th Mark registration: Thursday, July 25th



Solution

Problem 1

1.1
If we label V1 the output of the first stage, we can write:

V1 =
gm
sC1

(Vi − Vo),

while the second stage yields

Vo =
gm
sC2

(V1 − Vo).

The equations lead to
Vo

Vi
=

1

1 + sC1
gm

+ s2C1C2

g2m

=
1

(

1 + 2sC2

gm

)2 .

The circuit is a second-order filter with two coincident poles located at fp = gm/πC1 = 10 kHz.

1.2
Let us start with the infinite-bandwidth case. We break the loop at the input of the second amplifier and
apply a test voltage VT . The output of the second amplifier is given by:

V2 =
gm
sC2

(VT − V2) ⇒ V2 =
gm

gm + sC2
VT ,

which leads to
Gloop = − gm

sC1

gm
gm + sC2

.

This function has a pole in the origin and a second one at gm/2πC2 = 20 kHz, and the zero-dB frequency is
f0dB = gm/2πC1 = 5 kHz (Fig. 1, left). The phase margin is φm = 90− arctan(1/4) ≈ 76◦.

We now consider the finite amplifier bandwidth, setting gm = g0/(1 + sτ). This leads to

Gloop = − g0
sC1(1 + sτ)

g0
g0 + sC2 + s2τC2

,

where the second term gives two poles at approximately fp1 = g0/(2πC2) ≈ 20 kHz (i.e., the previous one)
and fp2 = 1/(2πτ). We then have two poles at fp2. If we require – say – that the phase margin remains
larger than 70◦, we must lose no more than 3◦ per pole, i.e.:

arctan(f0dB/fp2) = 3π/180 ⇒ fp2 ≈ 19f0dB = 95 kHz.

As a comment, please note that Gloop is already apparent from the expression of the gain computed in # 1.1,
which can be written as Gid/(1− 1/Gloop). Noting that the ideal gain (when gm is infinite) is 1, we directly
obtain the expression of the loop gain.

1.3
The voltage noise of the first amplifier goes as the signal, with unit transfer and two coincident poles at
10 kHz. We can then write

V 2
o ≈ SV

π

2
104 ≈ 3.93 × 10−13 V2 = (0.63 µV)2.

Actually, the noise equivalent bandwidth for two coincident poles is slightly smaller (1.22fp instead of 1.57fp),
but this will not change the result much (0.55 µV rms).
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Figure 1: Left = Loop gain with no amplifier BW limitations. Right = step- and delta-function responses.

The transfer of the second amplifier noise becomes instead

Vo = Vn
gm/sC2

1 + gm
sC2

+ g2m
s2C1C2

= Vn
sC1/gm

(

1 + 2sC2

gm

)2 = 2Vn
2sC2/gm
(

1 + 2sC2

gm

)2 = 2Vn
sτp

(1 + sτp)2
,

with one zero in the origin and two coincident poles. Taking advantage of the solution provided, we obtain:

V 2
o ≈ 4SV

1

8τp
≈ (0.89 µV)2.

Please note that integration of the asymptotic Bode diagram overestimates the noise in this case (about
1.17 µV rms). Total noise becomes then:

V 2
o ≈ (0.632 + 0.892) (µV)2 = (1.09 µV)2.

1.4
One property of the Laplace transform tells that differentiation in the frequency domain correspond to
multiplication by time in the time domain (with a minus sign). From the transfer in #1.1 and the single-pole
transfer function we can write:

1

1 + sτp
⇔ 1

τp
e−t/τp ⇒ 1

(1 + sτp)2
⇔ t

τ2p
e−t/τp .

The same result could have been obtained as a convolution (product in the Laplace domain) of e−t/τp/τp
with itself.

Problem 2

2.1
The step voltage response of the CR filter is

V1 = Ae−t/TF u(t),

u(t) being the step function. The filter output becomes

Vo = V1(t)−KV1(t− T ) = A
(

e−t/TF u(t)−Ke−(t−T )/TF u(t− T )
)

.

For t > T we have then

V0 = A
(

e−t/TF −Ke−(t−T )/TF

)

= Ae−t/TF

(

1−KeT/TF

)

= 0 ⇒ K = e−T/TF .

The result is shown in Fig. 1 (left, blue curve).
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Figure 2: Approximated weighting functions (left) and resulting time correlation (right).

2.2
The delta-function response is the time derivative of what already computed and is also shown in Fig. 1
(right, red curve). In the frequency domain, the symbolic analysis of the scheme yields:

H(s) =
sTF

1 + sTF

(

1−Ke−sT
)

=
sTF

1 + sTF

(

1− e
− T

TF
(1+sTF )

)

.

We now neglect the exponential decay and consider a flat behavior at −1/TF . The time correlation (Fig. 2)
contains the delta functions in τ = 0 and τ = ±T plus the time correlation of the rectangle (with the deltas):

khh(τ) = (1 +K2)δ(τ) −Kδ(|τ | − T ) +
T − |τ |
T 2
F

+
K − 1

TF
.

2.3
The output noise is given by

n2
y =

∫

Rxx(τ)khh(τ) = n2
x

(

1 +K2 − 2Ke−T/Tn + 2

∫ T

0

(

T − τ

T 2
F

+
K − 1

TF

)

e−τ/Tndτ

)

,

where
∫ T

0

T − τ

T 2
F

e−τ/Tndτ =

(

Tn

TF

)2( T

Tn
− 1 + e−T/Tn

)

.

For K = 1 we then have:

n2
y = n2

x

(

2− 2e−T/Tn + 2

(

Tn

TF

)2( T

Tn
− 1 + e−T/Tn

)

)

2.4
Obviously no! the circuit is linear and the output will always be a sinusoidal signal with the same frequency
as the input. T and K will only affect its amplitude and phase.


