
Electronics – February 13 2020 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is a differential amplifier (circles are ideal summing nodes). Parameter values
are Rg = 15 kΩ, Rf = 150 kΩ, R = 30 kΩ. The OAs have GBWP = 4 MHz. Consider for simplicity
Vcm = 0.

1. Find the expression of the closed-loop (ideal) gain.

2. Compute the loop gain for OA1 (consider OA2 as ideal for simplicity) and discuss the stability as a
function of the gain.

3. Compute the (differential) output rms noise voltage considering the equivalent noise sources of the

amplifiers,
√

SV = 20 nV/
√
Hz.

4. The OAs (and summing stages) are powered from a 5 V single-supply source and the input signal is
fully differential with dynamics of ±100 mV (i.e., V +

i , V −

i ≤ 100 mV). Find the maximum value for
the gain (and the corresponding value of Vcm).

Problem 2
A signal is made up of a series of two consecutive pulses having approximatively triangular shape and width
T ≈ 10 µs (right figure). We want to measure the difference in pulse amplitude ∆A ≈ 100 µV in presence
of a white noise with bilateral PSD λ = 10−12 V2/Hz.

1. We use two gated integrators to sample the amplitudes, which are then subtracted. Compute the
resulting S/N .

2. To improve S/N we replace the GIs with boxcar averagers. Compute the BA parameters that allow to
reach S/N = 1.

3. The pulses width T is not constant, but can fluctuate between 7 and 13 µs with uniform probability.
Evaluate the impact on the BA S/N .

4. The input noise has nearly-rectangular autocorrelation with correlation time Tn ≈ 2T . Estimate the
output noise.

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by February 17th Mark registration: Tuesday, Feb. 18th



Solution

Problem 1

1.1
If Vcm = 0, the inverting input of OA2 is also at zero, meaning that we have V −

o = −V +
o ; the output is fully

differential. To compute its value, we can evaluate the input voltage of OA1, VOA, from the upper and lower
resistive dividers:
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i ),

which means that the differential gain (differential output divided by differential input) is Rf/Rg = 10.

1.2
We break the loop at the output of OA1, applying a test signal Vs. If we label Vo2 the output of OA2, the
circuit outputs are V +

o = Vo2+Vs and V −

o = Vo2−Vs. However, as in the previous case, we have V −

o = −V +
o ,

i.e., Vo2 = 0. The voltage at the input pins of OA1 are then

V − =
Rg

Rf +Rg
Vs = −V + ⇒ Gloop = −A(s)

2Rg

Rf +Rg
.

Note that the circuit is stable with a closed-loop bandwidth equal to f0dB = GBWP/5.5 ≈ 0.7 MHz. The
circuit is in fact stable for any (differential) gain larger than 1. Gains smaller than one (if needed) would
result in a loop gain larger than A(s), which is better to avoid.

For the sake of discussion, we compute the loop gain for OA2. We break the loop at the output and apply the
test voltage. The two outputs become V +

o = Vs+Vo1 and V −

o = Vs−Vo1. Please note that now V −

o 6= −V +
o ,

as the loop around OA2 is broken! To compute V01, we set V + = V − for OA1, i.e.:

(Vs + Vo1)
Rg

Rf +Rg
= (Vs − Vo1)

Rg

Rf +Rg
⇒ Vo1 = 0.

This means that the inverting input of OA2 is at bias Vs and its loop gain is equal to −A(s).

1.3
The contribution of the second OA can be immediately computed noticing that the Vcm input sets the
common-mode voltage of the ouput (we have in fact Vcm = (V +

o + V −

o )/2). This means that the differential
noise is zero.
The contribution from the first OA must be computed thoroughly (see scheme in Fig. 1, left). Note that
AO2 acts as an inverting amplifier, so that V −

o = −V +
o . We can then equal the voltages at the input pins of

OA1, obtaining:

V +
o

Rg

Rf +Rg
= −V +

o

Rg

Rf +Rg
+ Vn ⇒ V +

o = Vn

Rf +Rg

2Rg
⇒ V +

o − V −

o = Vn

Rf +Rg

Rg
= 11Vn.

The output rms noise becomes then

(V +
o − V −

o )2 = 121 SV
π

2
f0dB ≈ 235 µV.

1.4
The output voltages must swing in the 0− 5 V range, meaning that the best value for their common mode
is 2.5 V. It is then best to pick Vcm = 2.5 V. The maximum output differential signal is then equal to 5 V
(a bit smaller in reality, because of the output stage limitation). Given that the maximum input differential
signal is 200 mV, the maximum achievable gain is 25.
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Figure 1: Left = Scheme for OA1 noise calculation. Right = Input signal to the BA in the equivalent time.

Problem 2

2.1
We can use an integration time TG = 2T/3, which is the optimum for a triangular signal. In this case signal
and noise at the GI outputs become

Vo =

(

A+
A

3

)

TG

2
=

2

3
ATG n2

o = λTG.

When we take the difference, we double the mean square noise, leading to the final expression

S

N
= ∆A

2

3

√

TG

λ

1√
2
≈ 0.122.

2.2
If we are using a BA to improve S/N , we can retain the same integration time as before, i.e., TC = TG. We
then need a number of equivalent pulses given by:

0.122
√

Neq = 1 ⇒ Neq ≈ 67.1 ⇒ 68,

meaning a time constant of the filter equal to

2TF

TC

= 68 ⇒ TF ≈ 227 µs.

Note that we could have achieved this result also by looking at the behavior in the “equivalent time”, where
the BA (that now behaves like an LPF) sees a sawtooth wave with average value 2A/3.

2.3
Since the integration time remains constant, a change in T has no effect on the noise, but only affects the
output signal. As said previously, if we look in the “equivalent time” τ frame, we see an LPF with an input
signal given by a sawtooth wave having different “teeth” (Fig. 1, right). Since the time constant is very large
compared to TG, the output is the average value of the input signal, which is
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)

TC

2
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(
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,

where (labelling TM = 13 µs, Tm = 7 µs)

TC

(

1

T

)

= TC

∫

p(T )

T
dt =

TC

TM − Tm

∫ TM

Tm

dT

T
=

TC

TM − Tm
log

TM

Tm
≈ 0.688.

Please note that in this case the result is not much different from the previous one (equal to 2/3), obtained
for constant T = T (but this is not a general result!). Parameters of the BA will be barely affected (new
Neq = 64).



2.4
We can start with an approximate solution, considering each BA separately and then summing the mean
square values. Given the extent of the noise autocorrelation Rnn, only the central part of the weighting
function time correlation matters. This can be approximated by a triangular function with basis equal to
2TC and value 1/2TF in zero (unity-gain BA). We then have:

n2
y =

∫

kwtt
(γ)Rnn(γ)dγ = n2

x

TC

2TF
,

meaning that a value n2
xTC/TF is obtained after the difference operation. Note that this simple solution is

approximate, because it neglects the correlation between the noises collected by the two BAs. Since in this
case we are taking the difference between the two BA outputs, having correlated noise results in a smaller
total noise and the above expression is an overestimate of the output noise.


