
Electronics – June 18 2020 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is a differential amplifier. Parameter values are R1 = 1 kΩ, R2 = 10 kΩ,
R3 = 10 kΩ, k ranging from 1 to 9. The OAs have GBWP = 10 MHz and A0 = 100 dB.

1. Find the expression of the closed-loop (ideal) gain.

2. Compute the OA input capacitance that grants a phase margin of 45◦ (consider the OA1 loop).

3. Compute the output rms noise voltage considering the equivalent noise sources of the amplifiers,
√

SV =
10 nV/

√
Hz.

4. Repeat problem 1.2, but for the input capacitance of OA2 (with OA1 as ideal).

Problem 2
The scheme in the right figure is controlled by two switches, ϕ1 and ϕ2 (consider TD ≥ TG). The input is a
constant signal during the first integration phase.

1. Compute the weighting function and its time correlation.

2. Consider a noise with nearly triangular autocorrelation and correlation time Tn ≫ TD. Provide an
estimate of the output rms noise.

3. There are now two noise sources: a low-frequency one (same as previous case) and a white one, with
bilateral PSD λ. Evaluate the resulting S/N and find the best values of TD and TG.

4. The two GI are now replaced by two Boxcar averagers, working with TD = 0. Sketch the new weighting
function and its time correlation.

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by June 23rd Mark registration: Friday, June 26th



Solution

Problem 1

1.1
We begin with the common-mode amplification, equalling the expression for V + and V − of OA1 and con-
sidering that the output voltage of OA2 is −kVo. Exploiting the linear superposition principle and setting
Vd = 0, we get

V − = Vc
R2

R1 +R2
+ Vo

R1

R1 +R2
= V + = Vc

R2

R1 +R2
− kVo

R1

R1 +R2
⇒ Vo = 0.

Writing the same equations under voltage source Vd we obtain

Vd
R2

R1 +R2
+ Vo

R1

R1 +R2
= −kVo

R1

R1 +R2
⇒ Vo = − R2

(k + 1)R1
Vd.

Note that changing the value of k allows to change the gain of the stage (from 1 to 5) without affecting the
resistor matching needed to reject the common-mode signal.

1.2
We first compute the loop gain of OA1, opening both loops at its output. We easily get

Gloop = −A(s)
R1

R1 +R2
(1 + k),

where the zero-dB crossover frequency f0dB changes from 0.18 GBWP = 1.8 MHz (k = 1) to 0.91 GBWP =
9.1 MHz (k = 9). When we add the input capacitance of OA1, Ci, we note that it introduces a pole in Gloop

while not adding any zero. The equivalent resistance seen by Ci is 2(R1 ∥ R2), so that the condition on the
pole satisfies

fp =
1

4πCiR1 ∥ R2
≥ fodB ⇒ Ci ≤ 9.7 pF.

1.3
The output of OA2 can be expressed as (see Fig. 1, left)

V2 = −kVo + Vn2(k + 1),

from which we can proceed in analogy with # 1.1, obtaining

Vo
R1

R1 +R2
= V2

R1

R1 +R2
+ Vn1 ⇒ Vo = Vn1

R1 +R2

(1 + k)R1
+ Vn2.

In the case k = 9, the output rms noise becomes

V 2
o = 2.21 SV

π

2
f0dB ≈ (0.56 µV)2.

For the k = 1 case (f0dB = 1.8 MHz) we get instead V 2
o = 31.25 SV

π

2
f0dB ≈ (0.94 µV)2.

1.4
Breaking both loops at the output of OA2, it is straightforward to obtain

Gloop = −A(s),

meaning that f0dB = GBWP . The resistance seen by Ci is now Ri = R3 ∥ kR3, leading to (worst case for
k = 9)

1

2πRiCi
≥ GBWP ⇒ Ci ≤

k + 1

2kπR
= 1.77 pF
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Figure 1: Left = Scheme for noise calculation. Right = Time correlation of the weighting function.

Problem 2

2.1
Recalling that the weighting function of a GI is a rectangular function, the overall WF can be expressed as

w(t, τ) = K(rect(0, TG)− rect(TD + TG, TD + 2TG)),

where rect(T1, T2) is the unit-amplitude rectangular function between T1 and T2. The time correlation of
the WF is shown in Fig. 1 (right). In the frequency domain we have (shifting the time axis by TG + TD/2):

W (t, f) = KTG sinc(πfTG)
(
ejπf(TG+TD) − e−jπf(TG+TD)

)
= 2jKTG sinc(πfTG) sin(πf(TG + TD)).

2.2
The mean square value of the output noise is given by

n2
out =

∫
Rnn(γ)kww(γ)dγ,

which can be solved analytically, if one bothers to. However, a rough approximation can be obtained
considering the noise autocorrelation Rnn to be nearly constant over a time comparable to TG, having values
Rnn(0) = n2

x at γ = 0 and Rnn(TD + TG) = n2
x(1− (TD + TG)/Tn) at γ = TD + TG (in other words, we are

assuming the triangular functions to behave as sampling deltas with equal area). This means that the total
noise can be written as

n2
out ≈ Rnn(0)2(KTG)

2 − 2Rnn(TD + TG)(KTG)
2 = 2n2

x(KTG)
2TD + TG

Tn
.

2.3
The output noise due to the white input noise is readily calculated from the expression of the WF time
correlation:

n2
y = 2K2TGλ,

which leads to the following expression for S/N :(
S

N

)2

=
(ATG)

2

2TGλ+ 2n2
LFT

2
G(TG + TD)/Tn

.

From this expression, it is clear that the best choice for TD is TD = 0. Setting this, we obtain(
S

N

)2

=
A2T 2

G

2TGλ+ 2n2
LFT

3
G/Tn

∝ TG

λ+ n2
LFT

2
G/Tn

.
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Figure 2: Left = Scheme for noise calculation. Right = Time correlation of the weighting function.

An optimization of this term leads to

TG =

√
λTn

n2
LF

.

It is interesting to express this result in term of the PSD of the LF noise, whose LF value is λLF = n2
LFTn:

TG = Tn

√
λ

λLF
.

Note that the optimum TG increases as the WN increases, and decreases as the LF noise gains importance.
Also note that the above result is obtained for TD = 0. If the condition TD ≥ TG is retained, we set TD = TG

and obtain

TG =

√
λTn

2n2
LF

.

2.4
The weighting function is obviously made up of two BA weighting functions, shifted by TC , as shown in Fig.2
(left). Its time correlation (positive values only) is shown in Fig. 2 (right).


