
Electronics – January 16 2020 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is a filter. Parameter values are C = 0.16 µF, R1 = 10 kΩ, R2 = 100 kΩ. The
OAs have GBWP = 1 MHz.

1. Find the expression of the ideal gains.

2. Compute the loop gain for one OA at your choice, considering the other one as ideal, and discuss the
stability.

3. Compute the output rms noise voltages considering the equivalent noise sources of the amplifiers,
√

SV = 20 nV/
√
Hz.

4. We want to change both gains, adding one pole to each of them. What is the simplest solution that
can be devised? (do not add an LPF at each output but find a better solution).

Problem 2
The right figure schematizes an LIA used for synchronous detection, with a sinusoidal reference signal. The
LIA input signal is Vi = A cosωRt with amplitude A ≈ 10 µV, submerged in a flicker noise with bilateral
PSD SV = K/f , with K = 10−10 V2 and noise corner frequency fc = 1 kHz. Note that the LIA uses a
square-wave detection.

1. Find a set of LIA parameters that grants S/N = 10.

2. The two amplifiers in the LIA have slightly different gains (apart from the sign). Find the new
expression for the output S/N .

3. Because of non-linear response of the sensor, the LIA input signal becomes Vi = A1 cos(ωRt) +
A3 cos(3ωRt), with A3 ≪ A1. Can we measure the value of A3 with the current scheme? If not,
add a simple circuit and compute the minimum value of A3 that can now be measured.

4. Assume that the quantity of interest is the phase of the modulated signal A cos(ωRt+φ), that changes
with time. Are the parameters computed in #2.1 still valid? How could we improve the setup?

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by January 20th Mark registration: Tuesday, Jan. 21st



Solution

Problem 1

1.1
We know that the input pins of OA1 are both at a voltage equal to Vi/2. The relation between Vo1 and Vo2

is instead

Vo2 =
1/sC +R2

R2

V + =
1 + sCR2

sCR2

1/sC

R2 + 1/sC
Vo1 =

1

sCR2

Vo1,

meaning that the second stage is actually a non-inverting integrator. Considering now the two resistors R1

between Vo1 and Vo2 we can compute V − of OA1 as

Vo1

2
+

Vo2

2
=

Vi

2
⇒ Vo1 =

sCR2

1 + sCR2

Vi, Vo2 =
1

1 + sCR2

Vi.

We then have an LP-HP filering of the input, with pole frequency equal to fp = 1/2πR2C = 10 Hz.

1.2
We start with OA1, opening its loop at the OA output and applying a test signal Vs. We now have
Vo2 = Vs/sCR2 and

V − =
Vs + Vo2

2
=

1 + sCR2

2sCR2

Vs ⇒ Gloop1 = −A(s)
1 + sCR2

2sCR2

.

As for OA2, we proceed in an analogous manner, noting that OA1 now behaves as an inverting amplifier
with gain of −1. We then have:

V − =
R2

R2 + 1/sC
Vs =

sCR2

1 + sCR2

Vs

V + =− 1

1 + sCR2

Vs

⇒ Gloop2 = −A(s).

Both loops are obviously stable, with phase margins of 90◦. The first OA has a zero-dB crossing frequency
f0dB = GBWP/2 = 500 kHz, while the second OA has f0dB = GBWP = 1 MHz.

1.3
The contribution of the first OA noise can be immediately computed noticing that the noise voltage source
can be placed in series to the non-inverting input of OA1, thus having the same transfer as a signal Vi/2.
We then have:

Vo1 =
2sCR2

1 + sCR2

Vn1 Vo2 =
2

1 + sCR2

Vn1.

The scheme for Vn2 can be found in Fig. 1 (left). Note that AO1 acts as an inverting amplifier, so that
Vo1 = −Vo2. The non-inverting input of OA2 is then

V + =
Vo1

1 + sCR2

+ Vn2

from which

Vo2 = V + 1 + sCR2

sCR2

=
Vo1

sCR2

+ Vn2
1 + sCR2

sCR2

.

Recalling that Vo1 = −Vo2 we immediately get Vo2 = Vn2 = −Vo1. This leads to:

V 2
o1 = 4SV

π

2

(

GBWP

2
− fp

)

+ SV
π

2

GBWP

2
≈ (40 µV)2

V 2
o2 = 4SV

π

2
fp + SV

π

2
GBWP ≈ (25 µV)2
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Figure 1: Left = Scheme for OA2 noise calculation. Right = spectral response of the LIA.

1.4
The simplest solution is to just add a capacitor at the input, in parallel to the resistor R1 connecting the
non-inverting input of OA1 to ground.

Problem 2

2.1
It is wise to pick a modulation beyond fc, so let’s say we have fR = 2 kHz. The noise collected by the PSD is
then white with a PSD given by SWN = K/fc = 10−13 V2/Hz, and the expression for the LIA S/N becomes

S

N
≈ A

√

4SWNBWn(π2/8)
= 10 ⇒ BWn =

A2

493SWN
≈ 2 Hz.

If we are using a single-pole output LPF, this amounts to fp ≈ 1.3 Hz, becoming about 1.6 for two coincident
poles.

2.2
If we call B+ and B− the two gains, the mixer multiplies the input signal and noise by a square wave with
such high and low values. The amplitude of the wave will differ slightly from 2, but this is not an issue as
such amplitude does not enter in the expression for S/N . However, the average value of the square wave is
now

BAV =
B+ +B−

2
6= 0,

meaning that in the spectral response we have a transmission window around f = 0. Such a term brings the
input noise directly at the output, and the output S/N becomes:

S

N
=

2AB/π
√

(

2B
π

)2
4SWNBWn

π2

8
+B2

AV K log
(

fp
fmin

)

=
A

√

4SWNBWn
π2

8
+
(

π
2

)2
(

BAV

B

)2

K log
(

fp
fmin

)

where fmin is the minimum frequency, related to the operating time of the instrument. As a reference, if
we take such time to be an hour, meaning that fmin ≈ 1/3600 ≈ 0.28 mHz, and a precision of 1%, i.e.,
BAV /B = 10−2, S/N is reduced from 10 to about 9.



2.3
Since the square wave contains all the odd harmonics of the reference frequency, the component at 3ωR is
indeed demodulated and sent to the output. The problem is that the signal at ωR is demodulated as well,
meaning that (in absence of phase errors) the output signal would be proportional to A1+A3/3 (the factor of
3 is because the amplitude of the third harmonic is one third that of the fundamental), making it impossible
to measure the small quantity A3.
In order to do this, we need to remove the signal A1, which can be done with a high- or band-pass filter
(with suitable attenuation) inserted at the input of the LIA (see Fig. 1, right). If we place a BPF, we only
have the signal and noise components at 3ωR at the LIA input, and S/N is given by the usual expression
for sinusoidal demodulation:

S

N
=

A3√
4SWNBWn

= 1 ⇒ A3,min = 2
√

SWNBWn ≈ 0.89 µV.

On the other hand, if we place a HPF we get noise from the harmonics at 3ωR, 5ωR, 7ωR and so on (basically,
all harmonics but not the fundamental). Recalling that the total harmonic contribution (including the
fundamental) is π2/8, we get:

S

N
=

A3/3
√

4SWNBWn

(

π2

8
− 1

)

= 1 ⇒ A3,min = 6

√

(

π2

8
− 1

)

SWNBWn ≈ 1.3 µV,

obviously larger than the previous value.

2.4
The problem with the phase measurement is that the output is proportional to its cosine, which is by no
mean linearly related to it. For example, for a phase change from 0 to 10◦, the cosine changes from 1 to
0.98, making the input signal very hard to detect. Of course, the solution is to use a double-demodulator.


