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Problem 1
The scheme in the left figure is a current source. Parameter values are R1 = 10 kΩ, R2 = 1 kΩ. The OA
has GBWP = 1 MHz and A0 = 100 dB.

1. Find the expression of the closed-loop (ideal) gain.

2. The input current source has a parallel capacitance Cs = 30 pF. Discuss the stability of the circuit and
compensate if necessary (consider for simplicity the case |ZL| � R2).

3. Compute the output rms noise current considering the equivalent noise sources of the amplifier,
√
SV =

10 nV/
√

Hz and
√
SI = 1 pA/

√
Hz, and resistors (4kBT ≈ 1.646 × 10−20 J). Consider for simplicity

the circuit in #1.1 (i.e., without capacitor Cs).

4. With reference to #1.2, consider the case in which ZL = RL ≤ R2 and compensate the stage.

Problem 2
In ultrasonic sensing, a train of pulses is sent to a target, and the reflected signal (assumed equal to the
transmitted one, for simplicity) is measured to extract the delay and the distance of the target. Consider a
signal made up of a series of N rectangular pulses, as in the right figure, with amplitude A and pulse width
TP . A white noise having bilateral PSD λ is also present at the signal recovery stage.

1. A gated integrator is used as a filter. Compute the resulting S/N .

2. What is the best filter that can be used to detect the signal? Sketch the output signal and compute
the resulting S/N .

3. Consider an input noise with exponential autocorrelation Rxx(τ) = n2x e
−|τ |/Tn and estimate the output

noise (consider the filter in #1.2 and assume large value of N and long correlation time Tn).

4. There is a large low-frequency noise at the input. Is it possible to modify the pulse shape in order to
reduce its effect (while still using the best filter option)?

Useful expressions:
∑
k

kαk =
α

(1− α)2

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by September 16th Mark registration: by Friday, Sept. 18th



Solution

Problem 1

1.1
As the input pins of the OA must stay at the same potential, the voltage drops across R1 and R2 must be
equal, which means:

IiR1 = IoR2 ⇒ Io = Ii
R1

R2
.

1.2
Breaking the loop at the OA output, we can obtain the following expression for Gloop:

Gloop = −A(s)

(
1

1 + sCsR1
− ZL
ZL +R2

)
≈ −A(s)

1

1 + sCsR1
,

where we assumed |ZL| � R2. The additional pole introduced by Cs is located at fp = 1/(2πCsR1) ≈
530 kHz, and reduces the phase margin below 45◦. To compensate the stage, we can simply put a capacitor
Cc in parallel to R1, as shown in Fig. 1 (left), obtaining:

Gloop = −A(s)
1 + sCcR1

1 + s(Cc + Cs)R1
.

Note that in this case there is no specific requirement on the phase margin, so we can follow two approaches.
First, let’s set a phase margin of 45◦, meaning that we must place the frequency of the zero at f0dB, i.e.

f0dB =

√
GBWP

2π(Cc + Cs)R1
= fz =

1

2πCcR1
⇒ C2

c −KCc −KCs = 0,

where K = 1/(2πR1GBWP ) = 15.9 pF. This equation leads to Cc ≈ 31 pF and to fp = 261 kHz, fz =
513 kHz. Due to the pole-zero proximity, the actual phase margin is φm = 90− arctan(513/261) + 45 ≈ 72◦.
A more rough-and-ready approach can be as follows: we set the zero at the original pole position, which in
this case means Cc = Cs. The pole now goes at 265 kHz, where |Gloop| = 1000/265 = 3.77. The new f0dB is
then 265

√
3.77 ≈ 515 kHz, and the phase margin is φm = 90− arctan(515/265) + arctan(515/530) ≈ 71◦.

1.3
The noise transfers are easily computed and result in

SIo =

(
S−I +

4kBT

R1

)(
R1

R2

)2

+ S+
I +

4kBT

R2
+ SV

1

R2
2

=

= (10−24 + 1.646× 10−24)100 + 10−24 + 1.646× 10−23 + 10−22 = 3.8× 10−22 A2/Hz,

leading to
I2o ≈ SIo

π

2
GBWP ≈ (24 nA)2,

where we have again considered |ZL| � R2 for simplicity. If we consider ZL = RL = R2, we get f0dB =

GBWP/2 and
√
I2o ≈ 17 nA.

1.4
The solution for the case RL = 0 has been already discussed in #1.2, so we are left with the other extreme,
i.e., RL = R2. If we retain the previous compensation scheme, Gloop becomes now

Gloop = −A(s)

(
1 + sCcR1

1 + s(Cc + Cs)R1
− 1

2

)
= −A(s)

2

1 + s(Cc − Cs)R1

1 + s(Cc + Cs)R1
,
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Figure 1: Left = Compensation scheme. Right = Output signal for the case N = 5.

where we can see that the position of the zero has changed. In particular, it is a good idea to pick Cc > Cs,
so that the zero remains in the LHP. In fact, it is quite obvious that any choice of Cc � Cs would be fine,
as it would lead to a pole-zero cancellation.
Just for the sake of it, we can repeat the calculations in #1.2, leading to

C2
c − Cc(K + 2Cs) + C2

c −KCs = 0⇒ Cc ≈ 92 pF

and to fp = 130 kHz, fz = 253 kHz. Again, the close proximity of the pole-zero couplet increases the actual
phase margin to 135− arctan(253/130) = 72◦.

Problem 2

2.1
The GI should work over the entire signal duration, which is (2N − 1)TP . The resulting S/N is then

S

N
=

KANTP√
K2λ(2N − 1)Tp

= A

√
N2TP

(2N − 1)λ
≈ A

√
NTP
2λ

,

where K is the gain of the GI.

2.2
The best option is to use a matched filter, with a weighting function equal to the signal. The output signal
is reported in Fig. 1 (right), where K is the amplitude of the weighting function, and we have set t = 0 as
the pulse arrival time. The output rms noise can be easily computed as that of a GI working over NTP
(remember that this only works if the input noise is white!), and S/N is given by

S

N
=

KANTP√
K2λNTp

= A

√
NTP
λ

,

with an improvement of a factor
√

2 with respect to the previous case.

2.3
To compute the output noise, we need the time correlation of the weighting function that, however, has
already been computed: it is in fact equal to the output signal, provided that we set A = K and that the
maximum is centered in zero. If we approximate as usual each triangular function with a delta function
having the same area, we obtain

n2o ≈ n2x(KTP )2
(
N + 2(N − 1)e−2TP /Tn + 2(N − 2)e−4TP /Tn + . . .

)
.

We can break the part into parenthesis into two terms, one with the N terms, the other with the remaining.
The first one becomes (let α = e−2TP /Tn)

N + 2Nα+ +2Nα2 + . . . = N

(
2
∑
k

αk − 1

)
= N

1 + α

1− α
.



The second term is instead (apart from the minus sign):

2α+ 4α2 + 6α3 + . . . = 2
∑
k

kαk =
2α

(1− α)2
.

The total noise becomes then

n2o ≈ n2x(KTp)
2N(1− α2)− 2α

(1− α)2
.

2.4
To reduce the LF noise, we need a weighting function with a zero in f = 0 (in the fequency domain, of
course). In the time domain, this means that the integral of w(t, τ) must be zero. However, because of the
matched filter, w(t, τ) is equal to the pulse shape, so it suffices to send a pulse with zero average value. In
our case, we can simply shift the pulses by a factor equal to A/2.


