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Problem 1
The scheme in the left figure is an active filter. Parameter values are R1 = R2 = 1.5 kΩ, C1 = C2 = 10 nF.
The OA has GBWP = 1 MHz and A0 = 100 dB.

1. Find the expression of the closed-loop (ideal) gain.

2. Discuss the stability of the circuit.

3. Compute the output rms noise voltage considering the equivalent noise source of the amplifier,
√

SV =
10 nV/

√
Hz.

4. We want to employ the scheme to build a 4th-order LP filter: sketch the relative scheme. How can we
modify it to obtain a band-pass filter?

Problem 2
A system has the I/O characteristic reported in the right figure, where Vy = V0e

−|Vx|/VT , with V0 = 5 V
and VT = 2 V. An LIA is employed to measure the value of the slope of the curve, as schematized in the
right figure, where Vx = VB + Vr cos(ωrt). The maximum reference amplitude is Vr = 100 mV. The signal is
masked by a unilateral flicker noise SV = K/f with K = 10−5 V2 and corner frequency fnc = 1 kHz.

1. Compute the minimum value of the slope (and the corresponding value of VB) that can be measured
if the measurement time must be shorter than 1 s (hint: linearize the characteristic around VB).

2. Consider the case in which the input signal is centered around VB = 0. Compute S/N and discuss the
case in which a square-wave mixer is used. Would it improve S/N?

3. With reference to the first point (VB ̸= 0), consider the case in which the reference signal is a square
wave and compute the new S/N .

4. For the case of sinusoidal reference, consider now the full exponential characteristics and provide an
approximated expression for the output signal.

Useful expressions:

| cosx| = 2

π
+

4

π

∑
k

(−1)k

1− 4k2
cos(2kx) cos3 x =

3 cosx+ cos 3x

4
cos5 x =

10 cosx+ 5 cos 3x+ cos 5x

16

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by July 23rd Mark registration: Monday, July 27th



Solution

Problem 1

1.1
Because of the C1 − R2 connection, OA acts as a differentiator, and its output voltage VOA is simply equal
to −sC1R2Vo. Applying the KCL at the output node, we get

Vi − Vo

R1
= sC1Vo + sC2(Vo − VOA),

which leads to
Vo

Vi
=

1

1 + s(C1 + C2)R1 + s2C1C2R1R2
=

1

(1 + sCR)2
,

Where C1 = C2 = C and R1 = R2 = R. We have a 2nd order LPF with coincident poles at 10 kHz.

1.2
We can discuss the stability by simply looking at the high-frequency behavior of Gloop, without actually
performing the calculation. For frequencies higher than the poles added by the capacitors, we can see that
C1 and C2 provide a short-circuit connecting the output to the non-inverting input of the OA. This means
that at high frequencies we have Gloop ≈ −A(s) and the stability is ensured. For those wishing to perform
the actual calculation, the final expression is

Gloop = −A(s)
(1 + sCR)2

1 + 3sCR+ (sCR)2

1.3
We place the voltage noise source at the OA input and write the following equation for the OA output:

VOA = −sCRVo + Vn(1 + sCR).

The KCL at the output node now reads:

Vo

R
= sC(Vn − Vo) + sC(VOA − Vo),

resulting in
Vo

Vn
=

sCR(2 + sCR)

(1 + sCR)2
.

The Bode plot is shown in Fig. 1 (left). We can neglect the slight overshoot and pick 5 kHz as the low-
frequency cutoff (it is the zero-dB crossing frequency of the asymptotic diagram), obtaining

V 2
o ≈ SV

π

2
(GBWP − 5× 103) ≈ (12.5 µV)2,

where the additional pole at GBWP added by the OA has been also accounted for.

1.4
To build a 4th-order LP filter we obviously need two stages. However, we cannot simply connect them in
series because their input/output impedances are not ideal and the transfer function would be modified. A
decoupling buffer stage is then needed.
For a BP filter, we need an LP and an HP filter, again cascaded via a buffer stage. The HP filter can usually
be obtained from an LP filter by swapping capacitors and resistors, as shown in Fig. 1 (right). To check if
this is the case, we can proceed as in #1.1, where now VOA = −Vo/sCR, and write:

sC(Vi − Vo) =
Vo

R
+

Vo − VOA

R
,
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Figure 1: Left = Bode plots for noise transfer (real and asymptotic). Right = HPF scheme.

which leads to
Vo

Vi
=

(sCR)2

(1 + sCR)2
,

confirming the approach. Note that a faster way to get to this result is to start from the LP expression and
apply the substitution sCR → 1/sCR.

Problem 2

2.1
A first-order expansion of the characteristic around VB leads to:

Vy(Vx) ≈ Vy(VB) +
dVy

dVx

∣∣∣∣
VB

(Vx − VB) = Vy(VB) +
dVy

dVx

∣∣∣∣
VB

Vr cosωrt.

The amplitude of the sinusoidal signal at the LIA input is then given by:

Vi =

∣∣∣∣dVy

dVx

∣∣∣∣
VB

Vr =
V0

VT
e−VB/VT Vr,

while the constant signal is obviously rejected. The output S/N becomes then

S

N
=

Vi√
2SV (fr)BWn

= 1 ⇒
∣∣∣∣dVy

dVx

∣∣∣∣ =
√

2SV (fr)BWn

Vr
.

To improve the sensitivity, it is better to move the modulation frequency above fnc, where SV = K/fnc =
10−8 V2/

√
Hz. As for the choice of the output LPF pole, we should recall that its time constant controls

the LIA output. If the output must reach the final value in 1 s, the time constant τ must be smaller
than about 0.2 s. Picking τ = 0.1 s, we have fp = 1/(2πτ) ≈ 1.6 Hz, leading to BWn = 2.5 Hz and
|dVy/dVx| = 2.2× 10−3. In turn, this means

VB = VT log

(
V0

|dVy/dVx|VT

)
≈ 14 V.

2.2
Around VB = 0 the characteristic is symmetric, meaning that the input signal to the LIA can be expressed
as

Vi = V0 −
V0

VT
Vr| cosωrt|,

where the linear approximation still holds for the two branches of the characteristics. The fundamental
frequency of this function is 2fr, so no signal is demodulated to the baseband and the output signal is
zero. Even a square-wave mixer would not change this situation, as the additional transmission windows are
located at the odd harmonics of fr, while the signal only contains even components.



2.3
If the reference signal is a square wave with amplitude ±Vr, the amplitude of the square wave at the input
of the LIA is

2A = V0

(
e−(VB−Vr)/VT − e−(VB+Vr)/VT

)
≈ V0e

−VB/VT
2Vr

VT
,

where we have again used a linear approximation of the exponential relation. Considering a square-wave
demodulation with amplitude B, we obtain a constant output signal of AB, leading to the expression for
S/N :

S

N
=

AB√
2
(
2B
π

)2
Sv BWn

π2

8

=
A√

Sv BWn
.

In the above expression, the factor π2/8 accounts for the white-noise transmission through the higher-order
windows, while 2B/π accounts for the amplitude of the fundamental harmonic. Note that S/N is a factor
of

√
2 higher than in #2.1.

2.4
From a formal standpoint, the input signal to the LIA is now

Vi = V0e
−(VB+Vr cos(ωrt))/VT = V0e

−VB/VT e−Vr cos(ωrt)/VT ,

of whom we should compute the Fourier transform, which leads to Bessel integrals. An alternative is to
expand the exponential term, obtaining

Vi = V0e
−VB/VT

∑
k

(
− Vr

VT

)k cosk(ωrt)

k!
.

Looking at the expressions provided, it is clear that only the odd powers have a contribution at fr, while
even values of k provide even harmonics and give no output contribution. We can therefore write the first
terms of the sum as

Vi ≈ V0e
−VB/VT

(
Vr

VT
cos(ωrt) +

(
Vr

VT

)3 cos3(ωrt)

3!
+

(
Vr

VT

)5 cos5(ωrt)

5!

)
.

Expanding the higher frequency terms as suggested in the text, we get, for the only relevant component at
fr:

Vi = V0e
−VB/VT

Vr

VT

(
1 +

(
Vr

VT

)2 3

24
+

(
Vr

VT

)4 10

1920

)
cos(ωrt).

the terms with the powers of Vr/VT = 0.05 represent the non-linearity error, which in our case is nearly
3.13× 10−4, dominated by the first term.


