
Electronics – July 22 2021 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is a transconductance amplifier. Parameter values are R1 = 380 kΩ, R2 = 20 kΩ,
R3 = 21.1 kΩ, R0 = 100 Ω, k = 9. OA1 has low-frequency gain of 100 dB and GBWP = 500 kHz.

1. Find the value of the closed-loop gain in the ideal case. Please note that R3 ∥ R1 = R2.

2. Compute the loop gain for OA1 with ideal OA2. What is the minimum GBWP value of OA2 that
grants a phase margin larger than 45◦?

3. Compute the output rms noise current considering the equivalent noise source of the amplifiers,
√

SV =
20 nV/

√
Hz.

4. Consider a difference in ground potential between input and output ground nodes. What is its effect
on the output current?

Problem 2
A discrete-time filter with sampling time Ts works on a triangular signal affected by a noise with nearly
triangular autocorrelation, as in the figure on the right.

1. A single sampling is performed. Evaluate S/N .

2. Three samples are now taken and added. Consider the noise only: what is the minimum rms value at
the output?

3. Consider also the signal, and assume T = Tn. What is the best S/N achievable with the three-sample
filter? (hint: consider a few cases)

4. Consider the case Tn ≫ T . Find suitable values for Ts and for the three sample weights to improve
S/N (and estimate it).

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by July 28th Mark registration: by Friday, July 30th



Solution

Problem 1

1.1
We label Vo the output of OA1, so that −kVo is the output of OA2. Voltages at the input pins of OA1 are

V + = V2
R2

R1 +R2
− kVo

R1

R1 +R2

V − = V1
R1 ∥ R3

R1 +R1 ∥ R3
− kVo

R1/2

R1/2 +R3
+ Vo

R1 ∥ R3

R1 +R1 ∥ R3
.

(1)

(2)

We consider a common/differential mode representation of the input voltages and note that the common-
mode transfer (V1 = V2 = Vc) is zero. We then set V1 = −V2 = Vd/2 and recall that R1 ∥ R3 = R2,
obtaining

−Vd = Vo + kVo
R1

R2

(
1− R1 +R2

R1 + 2R3

)
= Vo + kVo

R1

R2

(
R2

R1

)
= Vo(1 + k),

which leads to
Io =

Vo

Ro
= − Vd

(k + 1)Ro
= − Vd

1 kΩ
.

1.2
we break the loop at the output of OA1 and obtain (replace R3 with R1R2/(R1 −R2)):

V + = −kVT
R1

R1 +R2

V − = VT
R1 ∥ R3

R1 +R1 ∥ R3
− kVT

R1/2

R1/2 +R3
= VT

R2

R1 +R2
− kVT

R1 −R2

R1 +R2
,

(3)

(4)

which gives

Gloop = −A(s)
R2

R1 +R2
(k + 1) = −0.5A(s).

The zero-dB frequency is then f0dB = 250 kHz. To address the effect of the OA2 bandwidth, we can replace
k = 9 with k = 9/(1 + sτ), obtaining

k + 1

20
=

9
1+sτ + 1

20
= 0.5

1 + sτ/10

1 + sτ
.

We see then that Gloop has the same pole as OA2. To not lower the phase margin below 45◦, the pole must
fall after f0dB, meaning that GBWP must be

GBWP2 ≥ 9fodB = 2.25 MHz.

Please note that in reality the relation for an inverting amplifier involves Gid + 1, so the correct result is
2.5 MHz. Note also that we are neglecting the small phase contribution from the zero. The resulting loop
gain is shown in Fig. 1 (left).

1.3
The scheme for noise calculation is in Fig. 1 (right). We note that the OA2 output can be written as
Vn2(k + 1)− kVo and follow the approach of 1.1, obtainig

V + = (Vn2(k + 1)− kVo)
R1

R1 +R2
+ Vn1

V − = (Vn2(k + 1)− kVo)
R1 −R2

R1 +R2
+ Vo

R2

R1 +R2
.

(5)

(6)
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Figure 1: Left = Bode plot of the compensated loop gain (blue) and its asymptotic approximation (red).
Right = Scheme for noise calculations.

Equalling the input voltages of OA1 we obtain

Vo = 2Vn1 + Vn2 ⇒ SIo = 5
SV

R2
o

≈
(
0.45 nA/

√
Hz

)2
,

leading to
√
I2o =

√
SIo

√
(π/2)f0dB = 0.28 µA.

1.4
Fluctuations in ground potential behave as common-mode signals and are rejected by the circuit, so that the
output is unaffected.

Problem 2

2.1
For a single sampling of the signal (obviously at its peak), the resulting S/N is simply(

S

N

)
=

A√
n2
x

.

2.2
The time correlation of the weighting function consists of delta functions as in Fig. 2 (left; we consider
for simplicity unit-area delta functions), while the input noise autocorrelation is Rxx(γ) = n2

x(1 − |γ|/Tn).
Clearly, the minimum noise corresponds to minimum overlap between the functions, i.e., when only the
central delta is sampling Rxx(0). In any case, let us evaluate all the possible cases:

a) Ts ≤ 0.5Tn, i.e., all delta functions are sampling correlated noise:

n2
y =

∫
Rxx(γ)kwtt(γ)dγ = n2

x

(
3 + 4

(
1− Ts

Tn

)
+ 2

(
1− 2

Ts

Tn

))
= n2

x

(
9− 8

Ts

Tn

)
.

b) 0.5Tn ≤ Ts ≤ Tn, i.e., only the central and the delta functions at ±Ts are sampling correlated noise:

n2
y =

∫
Rxx(γ)kwtt(γ)dγ = n2

x

(
3 + 4

(
1− Ts

Tn

))
= n2

x

(
7− 4

Ts

Tn

)
.

c) Ts ≥ Tn:

n2
y =

∫
Rxx(γ)kwtt(γ)dγ = 3n2

x.
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Figure 2: Left = Time correlation of the weighting function. Right = Same for the case of the WF shown in
green in the inset.

As said, the minimum noise corresponds (unsurprisingly) to the last case, when we are sampling non-
correlated noise.

2.3
The signal can be expressed as A(1− |t|/T ), and sampling is performed at ±Ts and 0, leading to:

y = A+ 2A

(
1− Ts

Tn

)
= A

(
3− 2

Ts

Tn

)
.

To evaluate the best S/N we can just sample its value in a few points, taking advantage of the previous
results, obtaining:

Ts ≈ 0 ⇒ S

N
=

A√
n2
x

Ts = 0.5Tn ⇒ S

N
=

A√
n2
x

2√
5

Ts = Tn ⇒ S

N
=

A√
n2
x

1√
3

Clearly the best value is achieved for Ts = 0, i.e., when the three samples are equivalent to a single sampling
operation.
This result becomes clear if we consider the optimum filter in the frequency domain: its weighting function
is given by

|W (t, f)| = |X(f)|
Sn(f)

= constant,

as both quantities are proportional to sinc2(πfTn). A single sampling operation is indeed the optimum filter
for this case.

2.4
If Ts ≪ Tn, the previous filter always returns a value for S/N similar to the Ts = 0 case. To reduce the
correlated noise, we must then subtract the samples. An idea could be to have two negative samples (weight
−0.5) at ±Ts and a central sample (weight 1) at 0. Given the weighting function time correlation (Fig. 2,
right), the output noise becomes now

n2
y = n2

x

(
3

2
− 2

(
1− Ts

Tn

)
+

1

2

(
1− 2

Ts

Tn

))
= n2

x

Ts

Tn
.

Of course we pick Ts = T , obtaining a signal amplitude A and:(
S

N

)
=

A√
n2
x

√
Tn

T


