
Electronics – February 18 2021 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is a power OA driving an inductive load. Component values are R = 10 kΩ,
Rg = 30 kΩ, Rs = 1 Ω, L = 16 µH. The OA has low-frequency gain of 100 dB and GBWP = 1 MHz.

1. Find the expression of the closed-loop gain in the ideal case.

2. Compute the loop gain and evaluate the stability, compensating the circuit if necessary.

3. Compute the output rms noise current considering the equivalent noise sources of the amplifier,
√
SV =

50 nV/
√

Hz and
√
SI = 1 pA/

√
Hz.

4. Vi increases linearly from 0 to 250 mV in a time T , then remains constant. Sketch the (ideal) output
voltage of the OA and compute the minimum value of T if the output dynamic is ±10 V.

Problem 2
A sensor outputs an exponential signal Ae−t/T with A ≈ 10 µV and T ≈ 10 µs. The signal is sent to a
large-bandwidth preamplifier having input white noise with bilateral PSD λ = 2× 10−17 V2/Hz.

1. An optimum filter is applied right after the preamplifier. Compute the resulting S/N .

2. An LPF with time constant equal to T is placed after the preamplifier, followed by an optimum filter.
Compute the LPF output signal and noise PSD. Compute then the weighting function and resulting
S/N of the optimum filter.

3. Replace the optimum filter with a gated integrator. Select a suitable gate time and compute the
resulting S/N .

4. Consider the case of #2.1, but with a bilateral noise PSD given by S(f) = K/f + λ (i.e., flicker +
white noise). Find the weghting function of the optimum filter and compute the new S/N (hint: work
in the frequency domain and approximate the noise behavior in the S/N calculation).

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by February 23rd Mark registration: by Friday, Feb. 26th



Solution

Problem 1

1.1
The differential input voltage of the OA is zero, which implies V − = Vi. This means that the voltage at the
node right after the inductor is V1 = Vi(R+Rg)/R. The total current flowing in the inductor becomes then

Io = V1

(
1

Rs
+

1

R+Rg

)
≈ V1
Rs
⇒ Io =

Vi
Rs

(
1 +

Rg
R

)
=

Vi
0.25 Ω

,

where we considered that Rs � Rg.
The purpose of Rs is now clear: it senses the inductor current, providing a feedback signal that is proportional
to it, so that the quantity that is controlled by the feedback loop is the OA output current, not voltage!

1.2
Breaking the loop at the OA output, the loop gain can be easily obtained:

Gloop = −A(s)
Rs ‖ (Rg +R)

Rs ‖ (Rg +R) + sL

R

R+Rg
≈ −A(s)

Rs
Rs + sL

R

R+Rg
= −A(s)

4

1

1 + sL/Rs
.

The Bode diagram is shown in Fig. 1 (left; red curve). Note that the pole added by L is located at
fp = Rs/(2πL) ≈ 10 kHz, well before the GBWP . At fp we have |Gloop| = 25 and the 0-dB crossing takes
place at

f0dB = fp
√

25 = 50 kHz,

where the phase margin is φm = 180− 90− arctan(f0dB/fp) ≈ 11◦.
One possibility to compensate the stage is adding a lag network (i.e., an RC series) between the OA input
pins. This network adds a pole and a zero (at a higher frequency). To find the values of the compensating
elements Rc and Cc, we can proceed in this way: at high frequencies, higher than those of the pole and zero
added by the compensation network, Cc can be approximated as a short-circuit, and the network reduces to
resistor Rc placed in parallel to R. Gloop is then the same as before, but with R replaced by R ‖ Rc. To get
φm = 45◦ it has to be f0dB = fp = 10 kHz, down by a factor of 25 with respect to the original scheme, and
down by 100 with respect to A(s). This simply means:

R ‖ Rc
Rg +R ‖ Rc

=
1

100
⇒ Rg

R ‖ Rc
= 99⇒ Rc ≈ 312 Ω.

Cc can now be picked with the simple requirement fz ≤ f0dB. If we pick fz = 1 kHz, we have

Cc =
1

2πRcfz
= 510 nF.

Note that this network does not affect the ideal gain, but limits the bandwidth to the new f0dB = 10 kHz.

1.3
The noise voltage Vn is connected as the input, and the transfer is the same as in 1.1. The output rms noise
current is then √

I2o = 4Vn

√
π

2
f0dB ≈ 25 µA,

where we have used the previous value f0dB = 10 kHz. The noise current source connected at the non-
inverting input obviously gives no contribution, leaving us with noise current In connected at the inverting
OA input. Given that in R flows no current, voltage V1 (see 1.1) is simply InRg, and the total current flowing
through L becomes

Io = In +
V1
Rs

= In

(
1 +

Rg
Rs

)
= 3× 104In ⇒

√
I2o = 3× 10−8

√
π

2
f0dB ≈ 3.8 µA,

negligible with respect to the previous one.
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Figure 1: Left = Bode plot of the loop gains before (red) and after (green) compensation. Right = OA
output voltage (green). The red dashed line is the voltage drop across Rs.

1.4
The output voltage of the OA equals the voltage drops across Rs and L. The first is just equal to 4Vi and
increases linearly up to 1 V. The second is given by (in the 0− T interval)

VL = L
dIL
dt

= L
I

T
,

because the inductor current IL (flowing into Rs) increases linearly from 0 to I = 1 A in a time T (see Fig. 1,
right). The output limit is not exceeded if

VL < Vcc − 1⇒ T >
LI

Vcc − 1
≈ 1.8 µs.

Problem 2

2.1
Regarding the preamp output noise as white, the expression for the optimum S/N is(

S

N

)
opt

=
A√
λ

√∫ ∞
0

e−2t/Tdt = A

√
T

2λ
= 5,

,

2.2
The output signal is

y(t) = x(t) ∗ h(t) =

∫
x(τ)h(t− τ)dτ =

A

T

∫ t

0
e−τ/T e−(t−τ)/Tdτ = A

t

T
e−t/T .

The noise PSD is
Sy(f) = λ|H(jω)|2 =

λ

1 + (2πfT )2
, (1)

and its autocorrelation is (λ/2T )e−γ/T . The optimum filter can be seen as the cascade of a whitening filter
(an HPF) plus the matched filter stage. This latter one would be exactly the same as in #2.1, meaning that
S/N takes exactly the same value there computed.

2.3
We set x = t/T and integrate between x1 and x2. It is easy to see that the signal (Fig. 2, left) reaches its
peak at x = 1, so that the limits should be x1 < 1 and x2 > 1. The output signal is then

y = KAT

∫ x2

x1

xe−xdx = KAT
(
e−x1(1 + x1)− e−x2(1 + x2)

)
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Figure 2: Left = LPF output signal and optimum integration window. Right = Approximated (blue) and
correct (red) solution for the noise integral. The yellow line is the ratio between the two.

For the noise calculation we must consider the exponential autocorrelation of the input noise (see previous
point), so that we have

n2y =
λK2TG
T

∫ TG

0
e−γ/T

(
1− γ

TG

)
dγ =

λK2TG
T

(
T

∫ x2−x1

0
e−xdx− T 2

TG

∫ x2−x1

0
xe−xdx

)
= λK2T

(
(x2 − x1)

(
1− e−(x2−x1)

)
+ e−(x2−x1)(1 + x2 − x1)− 1

)
For example, between 0 and 2 the x-function becomes 0.55. The optimum value is x1 ≈ 0.4, x2 ≈ 2.1, with
function value ≈ 0.59 (note that it is 0.7 for the optimum filter case).

2.4
The optimum weighting function in the frequency domain is given by

|W (f)| ∝ |X(f)|
S(f)

=
AT√

1 + (2πTf)2
1

K/f + SW
,

and the resulting S/N is given by (calling K/SW = fnc and 1/(2πT ) = fx)(
S

N

)2

= 2

∫ ∞
0

|X(f)|2

S(f)
df =

2A2T 2

K

∫ ∞
0

1

1 + (f/fx)2
f

1 + f/fnc
df.

This integral can be analitically solved, but it is easier to break it down in two regimes: one where flicker
noise is dominant (f � fnc) and the other where white noise gives the main contribution (f � fnc). This
leads to (only for the integral)∫ ∞

0
≈
∫ fnc

0

f

1 + (f/fx)2
df +

∫ ∞
fnc

fnc
1 + (f/fx)2

df =
ln(1 + (fnc/fx)2)

2(2πT )2
+

fnc
2πT

(
π

2
− arctan

(
fnc
fx

))
(
S

N

)2

=
A2

(2π)2λfx

ln(1 + x2) + x(π − 2 arctanx)

x
,

where x = fnc/fx. The correct solution is instead:(
S

N

)2

=
A2

(2π)2λfx

x lnx2 + π

1 + x2
,

and the two results (only the x-dependent part) are compared in Fig. 2 (right).


