
Electronics – January 22 2021 Prof. A. Spinelli
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Problem 1
The scheme in the left figure is an amplifier for a piezoelectric sensor, characterized by a series capacitance
Cs = 500 pF and resistance Rs = 10 MΩ. The instrumentation amplifier has low-frequency gain G = 500.
Other parameter values are R = 10 MΩ, τ = 1 ms.

1. Find the expression of the closed-loop gain in the ideal case.

2. Compute the loop gain and evaluate the minimum bandwidth of the amplifier to ensure a phase margin
of at least 60◦.

3. Compute the output rms noise voltage considering the equivalent voltage noise source of the amplifier,√
SV = 10 nV/

√
Hz. Consider for simplicity the range f > 1 Hz.

4. With reference to #1.3, evaluate the output noise when the lower frequency limit is set to zero (make
the necessary assumptions on the operation of the stages).

Problem 2
The bridge circuit reported in the right figure is used to measure unknown inductances in terms of resistances
and capacitances. Its output is connected to an amplifier having input noise S(f) = K/f + SWN with
K = 10−6 V2 and noise corner frequency fnc = 10 kHz. Bridge supply is Vcc = 3 V.

1. Find the relation between the inductance L and the other bridge elements in order to balance the
bridge.

2. Consider now a small change in the inductance, from L to L + ∆L = L(1 + x). What is the output
voltage of the bridge (consider a balanced bridge and assume for simplicity all resistors to be equal)?

3. The bridge parameters are CR = L/R = 1 ms, x ≈ 10−3 with bandwidth of 1 Hz. Find the parameters
of a LIA system able to recover the signal.

4. Discuss the feasibility of a detection system not LIA-based (e.g. with an HPF to filter the flicker noise).

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by January 27th Mark registration: by Friday, Jan. 29th



Solution

Problem 1

1.1
Ideal case means infinite loop gain, i.e., infinite gain of the INA in this case. As a consequence, no current
flows in Rs and the current flowing into Cs and the two R resistors is

Ii = sCsVi.

Kirchhoff voltage law around the two feedback loops reads then:

2RIi = 2VINA,

where VINA is the output voltage of the INA. This leads to

VINA = RIi = sCsRVi ⇒ Vo =
VINA

sτ
=

CsR

τ
Vi = 5Vi.

1.2
Breaking the loop at the OA output and setting Z = Rs ∥ 1/sCs, we can obtain the following expression for
Gloop:

Gloop = −G(s)
2Z

Z + 2R
= −G(s)

2Rs

Rs + 2R

1

1 + sCs(Rs ∥ 2R)
,

where the pole added by Cs is located at fp = 1/(2πCs(Rs ∥ 2R) ≈ 48 Hz, and the DC gain is 333 (note
that this result could have been also obtained via the half-circuit approach). This means that the zero-dB
crossing takes place at f0dB = 333× 48 ≈ 16 kHz. To ensure a phase margin of 60◦, the contribution of the
G(s) pole fG must be:

ϕm = 60◦ = 180◦ − 90◦ + ∡G(f0dB) ⇒ ∡G(f0dB) = −30◦ ⇒ f0dB
fG

= tan 30◦ =
1√
3
,

which leads to fG ≈ 28 kHz.

1.3
We turn off the input voltage source and consider the noise voltage Vn, connected as in Fig. 1 (left). We
begin with the ideal transfer: the current flowing in the feedback loops is Vn/Z, because the differential input
voltage of the amplifier must be zero. This means that we have:

Vn

Z
(2R+ Z) = 2VINA ⇒ Vo =

VINA

sτ
= Vn

3

2

1 + 2sCsRs/3

sτ
.

For frequencies higher than the zero at fz ≈ 47.7 Hz the noise transfer is constant and equal to 5. This
means that we must add a pole at the zero-dB frequency of Gloop, f0dB = 16 kHz. The resulting transfer is
reported in Fig. 1 (right) and leads to

V 2
o ≈ SV

(
9

(4πτ)2
1

fL
+ 25

π

2
f0dB

)
≈ (8 µV)2,

dominated by the white noise contribution.
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Figure 1: Left = Scheme for noise calculation. Right = Bode plot of the noise transfer in the ideal case (blue)
and when accounting for the INA and integration stage limitations (red).

1.4
The problem with extending the limit down to f = 0 is of course the 1/sτ term. In reality this stage will
not provide infinite gain for zero fequency, but a finite value A0 (for example, given by the open-loop gain of
an OA-based integrator or by a resistor placed in parallel to the integration capacitor). The corresponding
pole is fp = 1/(2πτA0), so that the new expression for the output noise becomes:

V 2
o ≈ SV

(
9

4
A2

o

π

2
fp + 25

π

2
f0dB

)
= SV

(
9A0

16τ
+ 25

π

2
f0dB

)
.

Picking for example A0 = 500 (the noise transfer function in this case is shown in Fig. 1, right) we get√
V 2
o ≈ 9.5 µV. Please note that the deviation from the ideal gain at low frequencies is due to the integration

stage, and not to the INA stage, that provides a unity gain.

Problem 2

2.1
The output of the bridge can be written as:

VB = Vcc

(
Z4

R3 + Z4
− R2

R2 + Z1

)
= 0 ⇒ Z1

R2
=

R3

Z4
.

Of course, calibration must work for every frequency. Considering the DC case (where C is an open circuit
and L a short-circuit), we immediately obtain the requirement on resistors:

R1

R2
=

R3

R4
. (1)

In the general case we have:

R1

R2(1 + sCR1)
=

R3

R4(1 + sL/R4)
⇒ CR1 =

L

R4
⇒ L = CR1R4.

2.2
To begin with, we carry out the calculations. The output of the right-hand side of the bridge is

VR = Vcc
R4 + sL

R3 +R4 + sL
= k

1 + sL/R4

1 + sL/(R3 +R4)
= k

1 + sL/R4

1 + ksL/R4
,



where k = R3/(R3 +R4). The left-hand side output reads

VL = Vcc
R2

R2 +R1/(1 + sCR1)
= k

1 + sCR1

1 + sCR1 ∥ R2
= k

1 + sCR1

1 + ksCR1
(2)

The bridge output voltage is then:

Vo = VR − VL = kVcc

(
1 + sL/R4

1 + ksL/R4
− 1 + sCR1

1 + ksCR1

)
. (3)

We now consider the change in L, L → L(1 + x) and call L/R = CR = τ , obtaining

Vo = kVcc

(
1 + sτ(1 + x)

1 + ksτ(1 + x)
− 1 + sτ

1 + ksτ

)
=

Vcck(1− k)xsτ

(1 + ksτ(1 + x))(1 + ksτ)
≈ Vcc

x

4

sτ

(1 + sτ/2)2
,

where we have considered that k = 0.5 and that ∆L ≪ L, i.e., x ≪ 1.

2.3
Note that the magnitude of the transfer function T (s) = sτ/(1 + sτ/2)2 has its maximum for a frequency
fM = 1/πτ ≈ 318 Hz, where its magnitude equals 1 and the output signal becomes exactly the same as in a
resistive bridge. A possibility could then be to set the reference frequency fR = fM , while another option is
to set fR > fnc. In any case, the output S/N becomes:

S

N
=

Vccx|T (fR)|
4
√
2S(fR)BWn

,

where BWn = 10π/2, considering a single-pole output filter with bandwidth equal to 10 Hz. For fR = fM
we have |T (fR)| = 1 and

S

N

∣∣∣∣
fM

=
Vccx

4
√
2(K/fM )BWn

≈ 2.4.

For fR = fnc, |T (fR)| = ωRτ/(1 + (ωRτ/2)
2) ≈ 6.4× 10−2 and S/N becomes

S

N

∣∣∣∣
fnc

= 6.4× 10−2 Vccx

4
√
2(K/fnc)BWn

≈ 0.85.

This result is not surprising: by increasing fR beyond fM we reduce the signal as 1/f , but the noise is
reduced as 1/

√
f , hence the decrease in S/N !

2.4
This solution is totally uneffective for a very simple reason: an inductance behaves like a short-circuit at
DC! This means that the bridge output signal will be vanishingly small and impossible to measure (in fact
the transfer function evaluated in 2.2 has a zero in the origin).

Appendix
It is worth pointing out an approximation in solving 2.2. In fact, when we assume to have a variation in the
inductance L, we are considering a time-varying inductance, which means that the circuit is no longer LTI.
If Φ is the magnetic flux, the bipole equation becomes now

v =
dΦ

dt
=

d((L+∆L)i)

dt
= (L+∆L)

di

dt
+ i

d∆L

dt
.

When the rate of change (i.e., the bandwidth) of ∆L is small, the second term is negligible and these results
are correct.


