
Electronics – June 23 2021 Prof. A. Spinelli
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Problem 1
The scheme in the left figure has R1 = R2 = 5 kΩ, R3 = 200 kΩ. The OA has low-frequency gain of 100 dB
and GBWP = 1 MHz.

1. Find the expression of the closed-loop gains in the ideal case.

2. The OA has an input capacitance Ci = 8 pF. Compute the loop gain and evaluate the stability,
compensating the circuit if necessary (do not change the value of R3).

3. Compute the output rms noise voltage considering the equivalent noise source of the amplifier,
√

SV =
20 nV/

√
Hz. What value of SI would result in a negligible current noise contribution? What kind of

OA (BJT/CMOS) would you pick?

4. Consider the OA differential input resistance Rd = 200 kΩ and compute the low-frequency impedance
seen at input V1.

Problem 2
A sensor outputs rectangular pulses with amplitude A ≈ 20 µV and duration T ≈ 10 µs, separated by
T0 = 500 µs. The signal is sent to a preamplifier with bandwidth of 1 MHz and input noise PSD

√
SV =

50 nV/
√
Hz, followed by a boxcar averager.

1. Find a set of BA parameters that grants S/N = 10.

2. A low-frequency noise having nearly rectangular autocorrelation over a time Tn = 1 s is also present
at the BA input. What is the output noise?

3. Find a suitable HPF to be placed before the BA to remove the LF noise. What is the minimum value
of T0 compatible with an error of 1% on the signal?

4. Consider problem 2.1. Would it be convenient to move the BA before the amplifier? Why?

For a correct evaluation, you are asked to write your answers in a readable way; thank you

Do a good job!

Results will be posted by July 2nd Mark registration: by Tuesday, July 6th



Solution

Problem 1

1.1
Considering that no current flows in R3, by a simple linear superposition approach we obtain

Vo = 2V1 − V2.

1.2
We break the loop at the OA output. A fast computation is the following: as R3 ≫ R1, R2, the voltage at
midpoint between R1 and R2 is VT /2, VT being the test voltage applied. We then have the R3 − Ci LPF
leading to V − and to

Gloop(s) ≈ −A(s)
1

2(1 + sCiR3)
.

An alternative way is to note that Ci introduces a pole and no zero. We then compute the DC loop gain
−A(s)/2 and the resistance seen by Ci, R3 +R1 ∥ R2, obtaining the correct expression

Gloop(s) = −A(s)

2

1

1 + sCi(R3 +R1/2)
.

For the formal derivation, we label

Z = R1 ∥
(
R3 +

1

sCi

)
= R1

1 + sCiR3

1 + sCi(R1 +R3)
,

so that the midpoint voltage between R1 and R2 becomes:

V3 = Vs
Z

Z +R2
= Vs

R1(1 + sCiR3)

R1 +R2 + sCi(R1R2 +R1R3 +R2R3)
,

leading to

Vo = Vs
1

1 + sCiR3
= Vs

R1

R1 +R2 + sCi(R1R2 +R1R3 +R2R3)

Gloop(s) = −A(s)
R1

R1 +R2 + sCi(R1R2 +R1R3 +R2R3)
= −A(s)

2

1

1 + sCi(R3 +R1/2)
.

The pole frequency is fp = 98 kHz, where |Gloop(fp)| = 5.1 ≈ 14.1 dB. We have then f0dB = fp
√
5.1 ≈

221 kHz and ϕm = 90− arctan(f0dB/fp) ≈ 24◦.
The easist compensation option is to add a compensation capacitor Cc in parallel to R3. To find its value,
we can follow the first approach of Gloop calculation, obtaining

Gloop ≈ −A(s)

2

1

1 + sCiR3
⇒ −A(s)

2

1 + sCcR3

1 + s(Cc + Ci)R3
,

where the last expression stems from Replacing R3 with R3/(1 + sCcR3). Picking fz = 221 kHz we obtain
Cc = 3.6 pF, fp = 68.6 kHz, f0dB = 185 kHz and ϕm = 90 − arctan(f0dB/fp) + arctan(f0dB/fz) ≈ 60◦.
Bode plots are reported in Fig. 1 (left). Higher values of Cc lead to pole-zero cancellation and even higher ϕm.

Note that placing Cc in parallel to R2 would not be a good solution, as it would result in τz = R2Cc and
τp ≈ (R1 ∥ R2)Cc = 0.5τz, i.e., fp = 2fz: the additional pole is close to the zero and prevents the achievement
of sufficient stability.
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Figure 1: Left = Bode plot of the compensated loop gain (blue) and its asymptotic approximation (red).
Right = Bode plot of the input impedance.

1.3
The noise voltage Vn is connected like the input V1, and the transfer is the same as in 1.1. As for the noise
current In, the midpoint between R1 and R2 is at voltage InR3 and the current balance becomes

In + In
R3

R1
=

Vo − InR3

R2
⇒ Vo = In

(
R2 +R3 +

R2R3

R1

)
= In × 405 kΩ.

Given that f0dB is the same for both transfers, we can compare the PSDs. The noise current is negligible if√
SI 405× 103 ≪ 40× 10−9 ⇒

√
SI ≪ 9.8× 10−14 ≈ 0.1 pA/

√
Hz.

A CMOS OA is most suited to this purpose.

1.4
The open-loop impedance is

ZOL = Rd +R3 +R1 ∥ R2 ≈ Rd +R3,

while Gloop is now approximately

Gloop ≈ −A(s)
R1

R1 +R2

Rd

Rd +R3
= −A(s)

4
,

leading to

Zi = ZOL(1−Gloop(s)) ≈ (Rd +R3)

(
1 +

A(s)

4

)
.

The value is about 10 GΩ at low frequency. It is interesting to note that R3 increases ZOL but reduces Gloop

and has no net effect on the low-frequency Zi.

Problem 2

2.1
The time constant of the preamplifier is 160 ns, meaning that the pulse amplitude is not affected. Moreover,
if such time is much shorter than the BA time constant, the BA input noise can be regarded as white. The
BA output S/N is then (same formula as the LPF):(

S

N

)
BA

= A

√
4TF

SV
= 10 ⇒ TF =

25SV

A2
= 156 µs,



corresponding to Neq = 2TF /T = 31.2 (considering TC = T ).
The same result can be reached going through the single-pulse response, that is (GI approximation):(

S

N

)
sp

= A

√
2TC

SV
= 1.79,

leading to (
S

N

)
BA

=

(
S

N

)
sp

√
Neq = 10 ⇒ Neq =

(
10

1.79

)2

= 31.2.

2.2
To compute the output noise we should evaluate the expression

n2
y =

∫
Rxx(γ)kwtt(γ)dγ ≈ n2

x

∫ Tn

−Tn

kwtt(γ)dγ.

We know that the time correlation of the BA weighting function is made up of a series of spikes with
exponential envelope characterized by a time constant TF (TC + TO)/TC ≈ 8 ms, meaning that kwtt(γ) is
nearly zero at time Tn (another way to reach this conclusion is to consider the weighting function to be
non-zero over a time of the order of Neq(TC + To) = 16 ms; the two values are in the same ballpark).
This result means that the integral from −Tn to Tn actually spans over the entire kwtt , resulting in (remember
that integral in the time domain means zero value in the frequency one):

n2
y = n2

x

∫
kwtt(γ)dγ = n2

x|W (t, 0)|2 = n2
x.

This result makes sense! If the noise is correlated over such a long time, it is collected by the BA as if it
were an offset or a very low frequency signal.

2.3
The rectangular autocorrelation has width 2Tn = 2 s, meaning that the noise equivalent bandwidth fn is

2fn =
1

2Tn
⇒ fn =

1

4Tn
= 0.25 Hz.

We can then pick an HPF with a pole at 2.5 Hz (or even higher, if more noise reduction is needed), i.e., a
time constant TF = 1/5π ≈ 64 ms. An alternative derivation comes from recaling that the noise reduction
for this case is (see class notes) e−Tn/TF : if we want a reduction of 103 in the rms value, e−Tn/TF = 10−6 ⇒
TF = Tn/ ln 10

6 ≈ 72 ms.
Because TF ≫ T + T0, and the HPF transfer function has a zero at DC, the output is similar to the input
signal, but with zero average value, meaning that the new amplitude is (see class notes)

AH = A
T0

T + T0
> 0.99A ⇒ T0 > 99T = 990 µs.

Note that the result is independent of TF .

2.4
The option is completely useless! Obviously, if the BA is placed before the amplifier (and hence its noise
sources), it performs no noise filtering and the output S/N is A/

√
1.57× 106 SV = 0.32.

Perhaps a more interesting question is what happens assuming we could ideally place the BA before the
amplifier but after its noise source (obviously impossible in reality). In theory, S/N would be the same. In
practice, neither this option would work, as the very small voltage stored on the capacitor would make it
prone to errors due to leakage currents, bias, offset and so on.


