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For a correct evaluation, please write your answers in a readable way; thank you!

Problem 1
The scheme in the left figure controls the bridge drive by means of a transconductance amplifier. Bridge
resistors are 350 Ω, power supply is Vcc = 10 V. Other parameters are R = 100 kΩ, C = 20 nF, gm = 1 S.
The zero-drift CMOS OA has low-frequency gain of 120 dB and GBWP = 2 MHz.

1. Find the DC value of Vo when the bridge is at rest (i.e., bridge resistors are equal).

2. Compute the loop gain and discuss the stability.

3. Compute the output rms noise voltage considering the equivalent voltage noise source of the amplifier
only

(√
SV = 100 nV/

√
Hz
)
.

4. What are the pros and cons of this solution with respect to the standard one where the bridge is simply
connected to ground?

Problem 2
The scheme in the right figure uses synchronous detection to measure a current signal coming from a sensor.
A symmetric square wave excitation is used, and the output (symmetric) square-wave current ±Ii ≈ ±1 µA
is amplified by a transimpedance amplifier (TIA). The total input noise current PSD is SI = K/f + SWN ,
with K = 10−11 A2 and SWN = 10−14 A2/Hz.

1. Find values for the LIA parameters that allow to reach S/N = 10.

2. The sensor has its own time constant τ and behaves like an LPF. Sketch the signal at the mixer output
and evaluate the new LIA output signal (consider for simplicity the case in which the half-period T of
the square wave is > 5τ).

3. In the previous case, would it be convenient to add a phase shift between the two signals at the mixer
input? Justify your answer.

4. With reference to #2.2, evaluate the LIA output signal in the general case, when T is not necessarily
much larger than τ (hint: start from a symmetric exponential signal at the mixer input).

Do a good job!

Results will be posted by September 13th Mark registration: Friday, September 16th



Solution

Problem 1

1.1
We label VA the voltage at the midpoint between R1 and R2. We have then

Vg = − VA

sCR
⇒ I = −VA

gm
sCR

.

Neglecting the very small current in R, I will split evenly in the two branches, leading to

VA = Vcc +
I

2
R1 ⇒ VA = Vcc

2sCR

gmR1 + 2sCR
.

At DC we have VA = 0, and Vo = 0. This result is obvious: at DC the integrator has infinite gain, so the
only possible working point is zero voltage at its input, i.e., VA = 0!
In reality, the transconductance stage is easily implemented via a pnp BJT and a biasing resistor.

1.2
We ground the power supply and open both loops at the OA output, applying a test signal Vs. Neglecting
once again the tiny current flowing through R we obtain

VA = Vs
gmR1

2

which leads to

V − = Vs
sCR

1 + sCR
+ VA

1

1 + sCR
= Vs

gmR1

2

1 + 2sCR/gmR1

1 + sCR
⇒ Gloop = −A(s)

gmR1

2

1 + 2sCR/gmR1

1 + sCR
.

The pole and zero introduced by C are fp = 1/(2πRC) ≈ 80 Hz, fz = (gmR1/2)fp ≈ 14 kHz. Beyond such
frequencies Gloop = −A(s) and the phase margin is 90◦. The loop gain is plotted in Fig. 1 (left).

1.3
Following the previous convention, we know that VA = (gmR1/2)VG. We can then solve for the OA integration
scheme, obtaining

VG = −VA
1

sCR
+ Vn

1 + sCR

sCR
,

which leads to
VG = Vn

1 + sCR

gmR1/2 + sCR
⇒ Vo =

gmR1

2
VG = Vn

1 + sCR

1 + 2sCR/gmR1
,

where now fp ≈ 14 kHz and fz ≈ 80 Hz. Accounting for the additional pole at GBWP we get

V 2
o ≈ SV

π

2

(
fz +

(
gmR1

2

)2

(GBWP − fp)

)
≈ SV

π

2

(
gmR1

2

)2

GBWP = (3.1 mV)2.

1.4
The main advantage of this solution is that it rejects common-mode voltages, allowing to take single-ended
measurements. Note in fact that the OA is a zero-drift one, which essentially eliminates offset drift with
time and temperature.
The trade-off with respect to a standard design and an INA include more complexity and, more important,
the need for a negative power supply.
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Figure 1: Left = Bode plot of the loop gain (blue) and its asymptotic approximation (red). Right = Pictorial
view of the signal at the sensor output (blue dashes) and after the mixer (green).

Problem 2

2.1
We start by picking a reference frequency higher than the 1 kHz noise corner frequency, and remember that
in the case of full square wave modulation/demodulation the S/N ratio at the output of the LPF is higher
by a factor of

√
2 with respect to the sinusoidal case (remember also that noise PSDs are unilateral):

S

N
=

Ii√
SWNBWn

= 10 ⇒ BWn =
I2i

100SWN
= 1 Hz.

2.2
We consider for simplicity a unit amplitude symmetric square wave. The shape of the signals at the sensor
and mixer outputs are pictorially shown in Fig. 1 (right) (we neglect the effect of the TIA gain). If we label
VM the amplitude, the signal at the mixer output (green curve) can be expressed as

V (t) = −VM + 2VM

(
1− e−t/τ

)
= VM

(
1− 2e−t/τ

)
,

obviously valid in a half-period 0 ≤ t ≤ T . The LPF returns the average value, i.e.

Vo = ⟨V ⟩ = VM

T

∫ T

0
V (t)dt = VM − 2VM

T

∫ T

0
e−t/τdt = VM

(
1− 2τ

T

(
1− e−T/τ

))
≈ VM

(
1− 2τ

T

)
.

Note that even for T = 10τ we get 20% signal reduction.

2.3
The short answer is yes! With reference to Fig. 1, right, shifting the reference square wave (red) would result
in a higher signal, as we would avoid the negative spikes in the green signal. Another way of looking at
this is via the Fourier transform: the fundamental component of the FT of the blue signal will obviously be
shifted with respect to the reference (think of the phase term added by an LPF under sinusoidal excitation),
so compensating for this shift will enhance the signal.
Though not strictly required, we can carry out some calculations: with a positive shift ts we get (in the
ts − T interval):

Vo = VM
T − ts
T

− 2VM

T

∫ T

ts

e−t/τdt = VM

(
1− ts

T
− 2τ

T

(
e−ts/τ − e−T/τ

))
plus the contribution in the T − T + ts one, where the (blue) signal is the opposite:

Vo = −VM
ts
T

+
2VM

T

∫ ts

0
e−t/τdt = VM

(
− ts
T

+
2τ

T

(
1− e−ts/τ

))
.
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Figure 2: Left = Mixer output signal (on a half-period T ) for different values of τ . Right = LPF output
signal for different values of τ .

Summing the contributions, we get a negative ts-dependent term that must be minimized, equal to

F = 2VM

(
ts
T

+
2τ

T
e−ts/τ

)
.

Setting dF/dts = 0 we get ts = τ ln 2 ≈ 0.69τ . The relative improvement is higher for larger values of τ .
By the way, this result is obvious: looking at Fig. 1 (left), it is clear that the best condition is the one in
which the green curve is always positive, i.e., when the square wave is synchronous with its zero crossing.
Starting from t = 0 and unit amplitude, the green curve is

V (t) = −1 + 2
(
1− e−t/τ

)
,

which goes through zero at t = τ ln 2.

2.4
In the general case the mixer input signal is the response of the sensor LPF to a symmetric square wave,
i.e., a symmetric exponential signal, which is then multiplied by a synchronous square wave resulting in the
signal reported in Fig. 2 (left). If we label VH the amplitude, we have

V (t) = −VH + (VM + VH)
(
1− e−t/τ

)
.

at t = T we have V (T ) = VH because of symmetry:

VH = −VH + (VM + VH)
(
1− e−T/τ

)
⇒ VH = VM

1− e−T/τ

1 + e−T/τ
= VM tanh

(
T

2τ

)
.

The output signal is of course the temporal average:

Vo = ⟨V ⟩ = VM − (VH + VM )
1

T

∫ T

0
e−t/τdt = VM − (VH + VM )

τ

T

(
1− e−T/τ

)
.

The signal is reported in Fig. 2 (right) as a function of τ/T . Note that this technique can be used to extract
the value of τ , by performing measurements at different frequencies.


