
Electronics – February 18 2022 Prof. A. Spinelli
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For a correct evaluation, please write your answers in a readable way; thank you!

Problem 1
The scheme in the left figure is a differential amplifier. Parameter values are R = 10 kΩ, R1 = 100 kΩ,
C = 15 nF. The OA has low-frequency gain of 100 dB and GBWP = 2 MHz.

1. Find the common- and differential-mode gain in the ideal case.

2. Draw the Bode plot of the loop gain and compute the phase margin.

3. Compute the output rms noise voltage considering the equivalent noise sources of the amplifier
√
SV =

15 nV/
√
Hz,

√
SI = 50 pA/

√
Hz.

4. Consider a tolerance of 5% in resistor values and evaluate the effect on the amplifier CMRR.

Problem 2
An acquisition system features the triangular weighting function depicted in the figure on the right.

1. The filter is employed with a rectangular signal (starting at t0) having amplitude Vi and width Ti < T ,
affected by a white noise with bilateral PSD λ. Evaluate the output signal and noise.

2. What is the value of Ti that gives the best S/N? Why?

3. The signal is affected by a noise having nearly rectangular autocorrelation, and correlation time Tn < T .
Evaluate the mean square value of the output noise.

4. Design a scheme that allows to achieve such a function and set its parameters so that the integral of
the weighting function is equal to 10 (hint: cascade two TV filters).

Do a good job!

Results will be posted by February 23rd Mark registration: Friday, February 25th



Solution

Problem 1

1.1
We first apply a common-mode voltage Vc at both inputs. It is easy to see that no current flows in the
feedback network, so that we have

Vo = Vc ⇒ Ac = 1.

For the differential case, we set V2 = −V1 = Vd/2. Since the input pins of the OA are kept at the same bias,
the current flowing through the RC series is

I =
Vd

R+ 1/sC
= Vd

sC

1 + sCR
,

obviously flowing into resistor R1. The output becomes then

Vo = V2 + IR1 = Vd

(
1

2
+

sCR1

1 + sCR

)
=

Vd

2

1 + sC(R+ 2R1)

1 + sCR
⇒ Ad =

1 + sC(R+ 2R1)

2(1 + sCR)

1.2
We ground both inputs and open the loop at the OA output, applying a test signal Vs. We easily get

V − = Vs
R+ 1/sC

R+R1 + 1/sC
= Vs

1 + sCR

1 + sC(R+R1)
⇒ Gloop = −A(s)

1 + sCR

1 + sC(R+R1)
.

The pole and zero introduced by C are fp = 1/(2π(R+R1)C) ≈ 96 Hz, fz = 1/(2πRC) ≈ 1 kHz. Labelling
f0 = 20 Hz the OA pole, we also have

Gloop(0)f0 = Gloop(fp)fp ⇒ Gloop(fp) = Gloop(0)
f0
fp

= 2.08× 104 = 86.4 dB

Gloop(fp)f
2
p = Gloop(fz)f

2
z ⇒ Gloop(fz) = Gloop(fp)

f2
p

f2
z

= 192 = 46 dB.

the Bode plot is shown in Fig. 1 (left). The phase margin is clearly 90◦ and the zero-dB frequency is
f0dB = Gloop(fz)fz ≈ 192 kHz. Note that this frequency is equal to GBWP R/(R + R1), as capacitor C
behaves like a short-circuit at high frequencies.

1.3
At first, we can note that resistor R placed between the inputs serves no purpose at all, neither from the
signal nor from the noise viewpoint, and can be removed from the scheme (it obviously affects the input
impedance, but we are not discussing this property here).
Now, the voltage noise of the OA follows the non-inverting gain:

Vo = Vn
R1 +R+ 1/sC

R+ 1/sC
= Vn

1 + sC(R+R1)

1 + sCR
,

where fz = 96 Hz, fp = 1 kHz. Its high-frequency gain is limited by the pole at f0dB, leading to

V 2
0 = SV

π

2

(
fz +

(
R1 +R

R

)2

(f0dB − fp)

)
≈ SV

π

2

(
R1 +R

R

)2

f0dB ≈ (90 µV)2.

The current noise at the non-inverting input gives no contribution, while the other one flows in R1, giving

V 2
0 = SIR

2
1

π

2
f0dB ≈ (2.7 mV)2,
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Figure 1: Left = Bode plot of the loop gain (blue) and its asymptotic approximation (red). Right = CMRR
as a function of frequency for nominal value of resistors (blue) and the two extreme cases.

which is the dominant term. If resistor values cannot be lowered, an OA with better current noise performance
(say, CMOS-based) should be considered.
For the sake of completeness, we discuss resistor noise: the current noise of R1 (PSD of 0.4 pA/

√
Hz) has

the same transfer as SI , but is totally negligible (rms output contribution of 22 µV). The voltage noise of
resistor R (PSD of 12.8 nV/

√
Hz) goes with the non-inverting gain:

Vo = Vn
R1

R+ 1/sC
= Vn

sCR1

1 + sCR
⇒ V 2

0 = SR

(
R1

R

)2 π

2
(f0dB − fp) ≈ (70 µV)2.

1.4
In common-mode operation, no current flows in the circuit, so resistor values and tolerances have no effect
on the (unity) gain. We have then CMRR = Ad. Setting R ⇒ R(1 ± ϵ), R1 ⇒ R1(1 ± ϵ1) we have (see
#1.1):

CMRR = Ad =
1 + sC(R(1± ϵ) + 2R1(1± ϵ1)

2(1 + sCR(1± ϵ))
.

Picking opposite changes, the high-frequency value changes from 10.5 to 11.55, i.e., by 10% (not unsurpris-
ingly). Similar changes take place in the pole and zero positions. The Bode plot of CMRR for the nominal
and the two exteme cases are reported as a reference in Fig. 1 (right). Note that the impact is small, as
expected from this kind of stages.

Problem 2

2.1
We set for simplicity t0 = 0, so that the output signal is proportional to the area of the WF between 0 and
Ti, i.e.:

Vo = Vi

∫ Ti

0
w(T, τ)dτ = A

Ti

2

2T − Ti

T
Vi,

while the noise is

n2
o = λ

∫
w2(t, τ) = A2

∫ T

0

(
T − τ

T

)2

dτ = λA2T

3
.

2.2
The noise is independent of Ti, so the best solution is to pick as much signal as possible, setting Ti = T ! Note
that this case is different from the apparently similar one of triangular signal and rectangular WF discussed
in the class!
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Figure 2: Left = Scheme Bode plot of the loop gain (blue) and its asymptotic approximation (red). Right =
Noise transfers (not squared) for OA1 (red) and OA2 (green).

2.3
we should evaluate the well-known integral

n2
y =

∫
Rxx(γ)kwtt(γ)dγ,

where symbols have the usual meaning. To compute the time correlation of the WF, it is easier to consider
the mirrored signal, i.e., a positive ramp from 0 to T . Shifting its replica to the right by γ we obtain

kwtt(γ) =
A2

T 2

∫ T

γ
t(t− γ)dt =

A2

T 2

(
T 3

3
+

γ3

6
− γT 2

2

)
,

leading to

n2
y = 2n2

x

∫ Tn

0
kwtt(γ)dγ = 2n2

xA
2

(
TnT

3
+

T 4
n

18T 2
− T 2

n

4

)
.

Note that for Tn ≪ T the linear term in Tn dominates and we recover the result of #2.1, with λ = 2n2
xTn.

2.4
If we bear in mind that a ramp signal can be obtained as the integral of a constant one, this in turn being
the WF of a gated integrator stage, we can consider placing two GIs in series, working with the same gate
signal, as displayed in Fig. 2 (left). If we set the integration time to be 0− T for simplicity, and we consider
an input delta function applied at time τ within such an interval, the outputs of the two GIs (still in the
0− T interval) are (Fig. 2, right):

y1(t) = Ku(t− τ)

y2(t) = K2(t− τ)u(t− τ),

where K is the gain of each GI. When the gate is closed, the output is y2(T ) = K2(T − τ), which, seen as a
function of τ , reproduces the desired WF. The requirement on the gain becomes then∫

w(t, τ)dτ = K2T
2

2
= 10 ⇒ K =

√
20

T

and the amplitude of the WF is A = K2T = 20/T .


