
Electronics – June 23 2022 Prof. A. Spinelli
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For a correct evaluation, please write your answers in a readable way; thank you!

Problem 1
The scheme in the left figure is a non-inverting amplifier. The OA has low-frequency gain of 100 dB and
GBWP = 1 MHz. Consider R2 = 200 kΩ and R3 = 2 kΩ.

1. Find the expression of the ideal gain and the range of variation of R1 in order to change the gain in
the range 1− 100.

2. Consider the OA input capacitance Ci and find its maximum value that can grant a phase margin of
45◦ for the whole range of gain.

3. Compute the output rms noise voltage considering the equivalent noise sources of the amplifier
√

SV =
10 nV/

√
Hz,

√
SI = 10 pA/

√
Hz and resistors (4kBT ≈ 1.646 × 10−20 J). Consider unity gain for

simplicity.

4. We want to double the ideal gain. Propose a modification of the circuit (do not add resistors in
series/parallel to R1 or R2 nor add an additional gain stage). An approximated solution is also fine (if
discussed properly).

Problem 2
A sensor outputs exponential pulses Ae−t/TF , plagued by a white noise with bilateral PSD λ, as shown in
the figure on the right. After a large-bandwidth preamplifier, an LTI optimum filter is applied, that must
process the pulse within a time T .

1. Draw the optimum weighting function and compute S/N .

2. Compute the signal at the output of the optimum filter.

3. We want the output signal to go to zero as soon as possible after t = T (without reducing S/N),
so that multiple pulses may be processed without pile-up issuess. Propose a new weighting function
(approximations are also fine).

4. The white noise is non-stationary and with PSD proportional to the signal. Find the new optimum
S/N .

Do a good job!

Results will be posted by June 29th Mark registration: Friday, July 1st



Solution

Problem 1

1.1
A voltage equal to Vi/2 is obviously present at the OA inputs. The KCL at the inverting input node leads
to:
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2R1
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2R2
+

Vo − Vi/2

R2
⇒ Vo = Vi

R2

2R1
.

The circuits is a non-inverting amplifier with a gain expression similar to what is obtained from an inverting
scheme (i.e., without the “1+” term). The range of values for R1 is then 1− 100 kΩ. R3 is a biasing resistor
and does not affect the gain.

1.2
The input capacitor adds a pole to the loop gain, whose time constant is CiReq. The resistance seen by the
capacitor is

Req =
R3

2
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=
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2
+
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2
+
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,

where G = R2/2R1 is the ideal gain. The second term ranges from 2 (at G = 100) to 51 kΩ (at G = 1). The
loop gain without Ci is instead:

Gloop = −A(s)
R1 ∥ R2

R1 ∥ R2 +R2
= −A(s)

1

2(1 +G)
⇒ f0dB =

GBWP

2(1 +G)
.

To achieve a phase margin higher than 45◦ we then set

1

2πCiReq
≥ f0dB ⇒ Ci ≤

1 +G

πReqGBWP
≤ 2

π5.1× 1010
≈ 12 pF,

where the last inequality stems from the fact that the lowest value is achieved for G = 1 and Req = 51 kΩ.
Note that a higher values of R3 could be desired in some cases. Then, a bypass capacitor should be added.

1.3
The circuit for noise calculations is reported in Fig. 1 (left). From it, we can easily derive:
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2 ≈ 4.18× 10−12V
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,

dominated by the SIR
2
2 term. Since in this case we have f0dB = GBWP/4 = 250 kHz (see #1.2), we get√

V 2
0 =

√
SVo

π

2
f0dB ≈ 1.3 mV.

1.4
If we look at the solution in #1.1, we can see that replacing Vo with Vo/2 in the current balance equation
would do the job:
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.

Another way of reaching this conclusion is the following: if we want to multiply the gain by a factor of 2, we
can simply divide by the same factor the feedback transfer F , as Gid = 1/F .
In any case, a simple voltage divider is all we need. The scheme is reported in Fig. 1 (right). However, please
note that this is an approximate solution, working when R4 ≪ R2, so that the voltage divider midpoint is
close to Vo/2. Working out the exact transfer is left to the reader; the result is

Vo
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Figure 1: Left = Scheme for noise calculation. Right = Possible scheme for achieving double gain (with
R4 ≪ R2).

For example, picking R1 = 2 kΩ (G = 100) results in G = 100.495 if R4 = 20 kΩ.
If the values of R1 and R2 are fixed, an exact solution can be found by tailoring the resistors in the divider
to achieve the desired attenuation.

Problem 2

2.1
Since only the signal from t = 0 to t = T can be used to provide the output, the optimum weighting function
matches the signal only in this time interval. Hence, it is an exponential signal truncated after an interval
T , as shown in Fig. 2 (left).
The maximum output is obviously achieved for t = T , where we have

y(T ) =

∫
x(τ)w(T, τ)dτ = AK

∫ T

0
x2(τ)dτ = AK

TF

2

(
1− e−2T/TF

)
,

while the output mean square noise is

n2
y = λK2

∫ T

0
x2(t)dt = λK2

∫ T

0
e−2t/TF dt = λK2TF

2

(
1− e−2T/TF

)
.

We have therefore (
S

N

)
T

= A

√
TF

2λ

√
1− e−2T/TF =

(
S

N

)
opt

√
1− e−2T/TF .

Note that the prefactor is the optimum value of S/N , achieved when T → ∞. For example, with T = 0.83TF

we already get 90% of the optimum value.

2.2
The outut signal is

y(t) = A

∫
x(τ)w(t, τ)dτ.

For t ≤ T this results in

y(t) = AK

∫ t

0
e−τ/TF e−(τ−t+T )/TF dτ = AK

TF

2
e(t−T )/TF

(
1− e−2t/TF

)
= AKTF e−T/TF sinh

(
t

TF

)
.
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Figure 2: Left = Weighting function and output signal of the optimum filter. Right = Modified weighting
function (blue) and input signal (red).

For t > T we obviously have an exponential decay of the signal:

y(t) = y(T )e−(t−T )/TF = AKTF sinh

(
T

TF

)
e−t/TF .

The output signal is also shown in Fig. 2 (left).

2.3
To reduce the output signal, we need to add a negative part to the weighting function. This part must come
after the exponential one, so not to affect the optimum S/N . The simpler solution is placing a negative delta
function with area −K ′, as depicted in Fig. 2 (right). For t > T we can exploit the previous results and
write

y(t) = y(T )e−(t−T )/TF −K ′Ae−(t−T )/TF .

Setting y(t) = 0 we obtain

K ′ =
y(T )

A
= K

TF

2

(
1− e−2T/TF

)
.

2.4
We know that in this case the optimum weighting function is constant: w(t, τ) = K in the interval 0− T . If
we label λ(t) = λ0x(t) we have:

y(T ) = K

∫ T

0
Ax(τ)dτ = KATF

(
1− e−T/TF

)
while the output mean square value of the noise is

n2
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0
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)
,

from which (
S

N

)
T

= A

√
TF
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√
1− e−T/TF .


