
Electronics – January 20 2023 Prof. A. Spinelli

For a correct evaluation, please write your answers in a readable way; thank you
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Remember that solving 6 points correctly gives you 30/30

Problem 1
The amplifier in the left figure has R1 = 1 kΩ, R2 = 9 kΩ, R3 = 1.9 kΩ, C = 10 nF. The OA has
low-frequency gain of 120 dB and GBWP = 10 MHz.

1. Find the (ideal) gain of the stage.

2. Compute the loop gain and discuss the stability.

3. Compute the output rms noise voltage considering the equivalent voltage noise source of the amplifier
only

(√
SV = 10 nV/

√
Hz
)
.

4. Compute the (ideal) step voltage response of the circuit.

Problem 2
A sensor outputs symmetric triangular pulses of amplitude A and width 2T , sent to a preamplifier with
white input noise voltage PSD SV (see figure on the right). A gated integrator is used to recover the pulse
amplitude.

1. Find the optimum integration time and compute S/N .

2. Evaluate the output noise when a low-frequency noise with nearly triangular autocorrelation (with
correlation time Tn > TG) is present at the input (no white noise). Compute then the new optimum
TG and comment on the result. Consider Tn ≫ TG in the TG calculation only.

3. The LF noise is sampled right before the GI acquisition and subtracted from the output. Sktetch the
new weighting function and evaluate the output noise.

4. We now subtract two noise samples, taken at the beginning and end of the GI window, each weighted
one half the one in #2.3. Does this further reduce the LF noise? Why?

Allowed time 2 hours 45 minutes – Do a good job!

Results will be posted by January 24th Mark registration: Friday, January 27th



Solution

Problem 1

1.1
If we consider that no current can flow in R3 (it is there for bias current compensation purposes), we see that
the input pins of the OA are at bias V0 − Vi, which is also the voltage drop across C. The current flowing
in C is then sC(Vo − Vi) and the voltage at the midpoint between the resistors R1 becomes

V1 = sC(Vo − Vi)

(
1

sC
+R1

)
= (Vo − Vi)(1 + sCR1),

which is obvious considering the R1 − C LPF. The KCL at this node then reads

sC(Vo − Vi) +
V1

R2
=

Vo − V1

R1
⇒ V0 = Vi

R1 +R2

R1

1 + sC(R1 +R1 ∥ R2)

1 + sC(R1 + 2R2)
.

The low-frequency gain is equal to 10, with a pole at fp = 1/(2πC(R1 + 2R2)) ≈ 838 Hz and a zero at
fz = 1/(2πC(R1 +R1 ∥ R2)) ≈ 8.38 kHz. The high-frequency gain is equal to one, as can be seen from the
scheme when C is replaced by a short-circuit.

1.2
We replace the source Vi with a short-circuit and disconnect the OA output, opening both loops and applying
a test voltage Vs. We immediately get V − = Vs. To compute V +, we need instead to solve the network:
midpoint voltage V1 is now

V1 = Vs
(R1 + 1/sC) ∥ R2

(R1 + 1/sC) ∥ R2 +R1
= Vs

R2(1 + sCR1)

R1 +R2 + sCR1(R1 + 2R2)
,

which leads to
V + = Vs

1

1 + sCR1
= Vs

R2

R1 +R2 + sCR1(R1 + 2R2)

and to

Gloop = −A(s)

(
1− R2

R1 +R2 + sCR1(R1 + 2R2)

)
= −A(s)

R1

R1 +R2

1 + sC(R1 + 2R2)

1 + sC(R1 +R1 ∥ R2)
.

Please note that this result could have been easily obtained by noticing that the open-loop gain is GOL = A(s)
(just ground the the feedback paths) and recalling that Gloop = −GOL/Gid.
The loop gain is plotted in Fig. 1 (left). Note that beyond the pole frequency at 8.38 kHz, the ideal gain is
1 and Gloop = −GOL = −A(s), so that the phase margin is 90◦ and f0dB = GBWP .

1.3
The noise voltage Vn of the OA has the same transfer as the input voltage:

V0 = Vn
R1 +R2

R1

1 + sC(R1 +R1 ∥ R2)

1 + sC(R1 + 2R2)
,

to which we should add a pole at GBWP given by the OA. The transfer is then

V 2
o ≈ SV

π

2

((
R1 +R2

R1

)2

fp + (GBWP − fz)

)
≈ SV

π

2
GBWP = (39.6 µV)2.
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Figure 1: Left = Bode plot of the loop gain (blue) and its asymptotic approximation (red). Right = Weighting
function (green) and its time correlation (red) when a sampling delta in introduced to remove the
LF noise.

1.4
For a unit amplitude step, the output voltage in the Laplace domain becomes

Vo(s) = G
1 + sτz
1 + sτp

1

s
= G

(
τz − τp
1 + sτp

+
1

s

)
,

where G = 10, τz = 1/(2πfz) = 19 µs, and τp = 1/(2πfp) = 190 µs. Recalling the elementary function
transform, we get

vo(t) = G

(
τz − τp

τp
e−t/τp + 1

)
h(t),

i.e., an exponential function starting from vo(0) = Gτz/τp = 1 V and going to vo(∞) = 10 V. Note that
these values can be computed from the initial/final value theorems, or from the value of the transfer function
(only for the step case).

Problem 2

2.1
If one wants to do the calculations, it is convenient to shift the signal so to have a symmetric signal with the
maximum in t = 0. However, the case of triangular signal with white noise is well-known and discussed in
the drills: the optimum integration width is 2/3 of the pulse width. This is also true in the symmetric case,
so that we have a window of ±(2/3)T , i.e.,

S

N
= A

(
2− 2

3

)
2

3
T√

SV (2/3)T
= A

√
T

SV

4
√
2

3
√
3
.

Note that S/N is larger by a factor of
√
2 with respect to what obtained from a one-sided triangular signal.

2.2
The GI WF time correlation is the triangular signal

kww(γ) = K2TG

(
1− γ

TG

)
∀ |γ| ≤ TG,

which leads to

n2
o = 2K2n2

LFTG

∫ TG

0

(
1− γ

TG

)(
1− γ

Tn

)
dγ = K2n2

LFT
2
G

(
1− TG

3Tn

)
,



that can be approximated by K2n2
LFT

2
G when Tn ≫ TG. The new S/N becomes then

(
S

N

)2

= A2

(
2− TG

2T

)2 T 2
G

4

n2
LFT

2
G

=
A2

4n2
LF

(
2− TG

2T

)2

,

which is maximized for TG = 0! This is not surprising: the noise is highly correlated and its contribution
increases linearly with TG (think of an unknown offset), while the triangular signal decreases from the
maximum value. Hence, the best choice is to minimize the integration time.

2.3
The new weighting function is a negative delta function followed by the usual rectangular profile (see inset in
Fig. 1, right). To reduce the LF noise contribution, the area of the WF must be zero, and the delta function
integral is −KTG. The time correlation of the WF is shown in Fig. 1 (right) and can be written as:

kww(γ) = K2T 2
Gδ(γ)−K2|γ| ∀ |γ| ≤ TG,

leading to

n2
o = K2T 2

Gn
2
LF − 2n2

LF

∫ TG

0
K2γ

(
1− γ

Tn

)
dγ = K2n2

LF

(
T 2
G − 2

(
T 2
G

2
−

T 3
G

3Tn

))
= K2n2

LF

2T 3
G

3Tn
.

Note that the mean square noise is smaller with respect to the previous case by a factor of roughly TG/Tn.

2.4
It does indeed! Taking two noise samples with weight 1/2 means that we are subtracting the average noise
(over two samples) rather than one instantaneous value. This makes no difference from the viewpoint of the
LF components (that are cancelled in both cases), but reduces the contribution at higher frequencies. In
other words, this choice tracks the noise fluctuation over a time TG rather than relying on a single sample.

To perform the calculations (not required), we consider the new WF, which is the usual rectangular function
with the addition of two delta function at its sides. Let us consider for simplicity K = 1/TG (unity gain GI),
meaning the two deltas have area of −1/2. The time correlation is similar to the one in Fig. 1 (right), but
the central delta has area of 1/2 and there are two delta at ±TG with area 1/4. So, the integral result in the
last equation is still valid, but the first term K2T 2

Gn
2
LF = n2

LF is replaced by

1

2
n2
LF +

2

4
n2
LF

(
1− TG

Tn

)
= n2

LF

(
1− TG

2Tn

)
,

meaning that the final result is

n2
o = n2

LF

(
1− TG

2Tn

)
− n2

LF

(
1− 2TG

3Tn

)
= n2

LF

TG

6Tn
.


