
Electronics – September 6 2023 Prof. A. Spinelli

For a correct evaluation, please write your answers in a readable way; thank you
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Solving 6 points correctly gives you 30/30

Problem 1
The scheme in the left figure is a single-to-differential converter. The OA has A0 = 120 dB and GBWP =
10 MHz. Parameters are R = 200 kΩ, C = 10 pF. In the following, consider the differential output
V0 = Vo1 − Vo2.

1. Compute the gain.

2. Compute the loop gain and discuss the stability.

3. Compute the output rms noise voltage considering the equivalent noise sources of the OA and the
inverting stage

√
SV = 7 nV/

√
Hz.

4. Consider the OA input capacitance Ci and discuss its impact on the phase margin (hint: use the
Thevenin theorem to avoid lenghty calculations).

Problem 2
A sensor outputs triangular pulses of amplitude A ≈ 1 mV and duration T = 100 ns, on top of a noise having
nearly rectangular autocorrelation with Tn ≈ T/2 and mean square value n2 ≈ 10−7 V2. The preamplifier
has a bandwidth BW = 10 MHz. Neglect for simplicity the amplifier effect on the signal and noise when
possible.

1. A single sample is taken. Evaluate S/N .

2. A gated integrator is now used. Compute S/N and discuss the difference with the previous result.

3. Consider a flicker noise K/f with K = 10−8 V2. To reduce its effect, three samples are taken
(remove the GI). Find suitable values for times and weights and compute S/N (remember that
cosx =

∑
k(−x2)k/(2k)!). Comment on the accuracy of the result.

4. To reduce the flicker noise, we now place an HPF after the amplifier. Find suitable values for TF and
evaluate the signal undershoot.

Allowed time: 2 hours 45 minutes – Do a good job!

Results will be posted by September 8th Mark registration: Wednesday, September 20th



Solution

Problem 1

1.1
The voltage at the NI input of the OA is

V + = − Vo2

1 + sCR
,

equal to the I input bias:

V + = V − =
Vi

1 + sCR
+ Vo2

sCR

1 + sCR
⇒ Vo2

Vi
= − 1

1 + sCR
,

from which
Vo

Vi
=

Vo1 − Vo2

Vi
=

2

1 + sCR
.

The pole frequency is fp = 1/(2πRC) ≈ 80 kHz.

1.2
We cut both loops by applying a test voltage VT at the OA output, and easily obtain:

V + = −VT
1

1 + sCR
V − = VT

sCR

1 + sCR
,

from which
Gloop = A(s)

V + − V −

VT
= −A(s),

obviously stable with f0dB = GBWP = 10 MHz.

1.3
We place the OA noise voltage source Vn1 at the NI input and write the circuit equations:

V + = Vo1
1

1 + sCR
+ Vn1 = V − = Vo2

sCR

1 + sCR

Vo1 = −Vo2 − Vn2,

where Vn2 is the inverting stage voltage noise. We obtain

Vo = Vo1 − Vo2 = −2Vn1 + Vn2
1− sCR

1 + sCR
,

SVo = 4SV 1 + SV 2

∣∣∣∣1− sCR

1 + sCR

∣∣∣∣2 = 4SV 1 + SV 2.

The mean square output noise is then

V 2
o = 5SV

π

2
f0dB ≈ (62 µV)2 .

1.4
To evaluate Gloop, we need to find Vd, the differential OA input voltage. However, solving the network for
V + and V − results in long and complicated expressions, that eventually simplify. This becomes much easier
if Vd is used as one network variable, but an even better simplification is achieved by applying the Thevenin
theorem at the top and bottom of Ci. This leads to the scheme in Fig. 1 (right), where Z = R ∥ ZC =
R/(1 + sCR) and

VL = VT
sCR

1 + sCR
VR = −VT

1

1 + sCR
,
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Figure 1: Left = Equivalent scheme for the calculation of Gloop. Right = HPF undershoot as a function of
TF /T .

leading to

Vd = (VR − VL)
1/sCi

2Z + 1/sCi
= −VT

1 + sCR

1 + s(C + 2Ci)R
⇒ Gloop = −A(s)

1 + sCR

1 + s(C + 2Ci)R
.

It is clear that the circuit is quite immune to the effect of Ci, and that values much larger than C (quite
unlikely) are needed to degrade the phase margin.

Problem 2

2.1
If we neglect the effect of the amplifier, whose time constant is 10−6/(20π) ≈ 16 ns, we find:

S

N

∣∣∣∣
sample

=
A√
n2

= 3.16.

2.2
We assume the signal peaks at t = 0 and consider a symmetric integration window from −TG to TG. The
output signal is then

Vo = 2AK

∫ TG

0
Vi(t)dt = AKTG

(
2− TG

T

)
.

For the noise calculation, we need the autocorrelation of the WF, that is a triangular function ranging from
−2TG to 2TG and with amplitude 2TGK

2. We then get (for 2TG ≥ Tn)

n2
GI =

∫
Rxx(τ)kww(t, τ)dτ = 2K2 n2 TGTn

(
2− Tn

2TG

)
,

and 4K2T 2
G n2 for 2TG ≤ Tn. If we take TG = Tn = T/2 we get

S

N

∣∣∣∣
GI

=
A√
n2

3
2TG√
3T 2

G

=
A√
n2

√
3

2
≈ 0.87

A√
n2

.

The result is lower than the previous one, which means that the GI is not effective in reducing the noise, as
the integration time is comparable with the noise correlation time.



2.3
Given the shape of the signal, we can take one sample with unit weight at t = 0 and two samples with weight
−1/2 at ±T . The output signal is obviously A, while the weighting function and its time correlation are:

w(t, τ) = δ(τ)− 1

2
δ(τ ± T ) ⇒ kww(t, γ) =

3

2
δ(γ)− δ(γ ± T ) +

1

4
δ(γ ± 2T ),

which translates to

|W (t, f)|2 = 3

2
−

(
ejωT + e−jωT

)
+

1

4

(
ejω2T + e−jω2T

)
=

3

2
− 2 cos(ωT ) +

1

2
cos(2ωT ).

To evaluate the output noise, we expand in series the cosine terms cosx ≈ 1− x2/2 + x4/24 and obtain

|W (t, f)|2 ≈ 3

2
− 2

(
1− (ωT )2

2
+

(ωT )4

24

)
+

1

2

(
1− (2ωT )2

2
+

(2ωT )4

24

)
=

(ωT )4

4
,

leading to

n2
FN =

∫ fH

0

K

f
|W (t, f)|2df ≈ (πT )4K

∫ fH

0
4f3df = K(πfHT )4.

taking fH = 10 MHz (the amplifier BW), we get fHT = 1 and n2
FN ≈ 97.4 K ≈ 10−7 V2, which is to be

compared with the original noise contribution equal to (3/2)n2 = 1.5× 10−7 V2.

The first comment is that the filter eliminates all second-order contributions of the series expansion, so
that a higher order expansion is required to get a non-zero result. However, in this case, the FN result is
hugely overestimated: at fH = 10 MHz the cosine argument is ωHT = 2π = 6.28, meaning that the Taylor
approximation is awful: the exact result is in fact n2

FN ≈ 3.3 K = 3.3× 10−8 V2, meaning that the filter is
effective in reducing LF noise.

2.4
If the time constant TF is much longer than T , the pulse is barely affected by the HPF, and at the output
we have (

S

N

)
=

A√
K ln

(
TF

TH

) = 4.55,

where TH = 1/(2πfH) ≈ 16 ns is the time constant of the amplifier pole and we have taken TF = 20T = 2 µs.
The output signal undershoot is the response of the filter at t = T , and can be exactly calculated from the
WF:

y(T ) =

∫ T

−∞
x(τ)h(T − τ)dτ,

but the calculation is boring. An approximated expression can be derived as follows: if the pulse is fast, it
will not be affected much by the filter. So, during the pulse, a current equl to x(t)/R flows into the capacitor,
that will be charged at a voltage:

VC(t) =
Q

C
=

1

RC

∫ t

x(τ)dτ.

At t = T we have VC(T ) = AT/TF , which is the amount of undershoot. A comparison between this result
and the correct one is reported in Fig. 1 (right).


