Electronics — February 17 2023 Prof. A. Spinelli

For a correct evaluation, please write your answers in a readable way; thank you ‘

'Tnl n

Remember that solving 6 points correctly gives you 30/30

Problem 1
The amplifier in the left figure is an AC-coupled follower, having R = 100 k), C = 3 uF. The OA has
low-frequency gain of 100 dB and GBW P = 500 kHz.

1. Find the (ideal) gain of the stage.
2. Compute the loop gain and discuss the stability.

3. Compute the output rms noise voltage considering the equivalent noise sources of the amplifier 1/ Sy =
10 nV/VvHz, \/Sr =1pA/ VHz. Consider the high-frequency behavior for simplicity.

4. Consider a parasitic input capacitance C; = 4 pF. Discuss the stability and compensate if necessary
(do not change the resistor values).

Problem 2

A sensor outputs a rectangular pulse of amplitude A and width T, affected by a noise with exponential
autocorrelation R, = nZe /T A discrete-time filter with sampling time ¢5 is used to recover A (right
figure). Do not assume T, > T or T, < T

1. Two samples are taken: one with noise, the other with signal + noise. Compute the resulting S/N.

2. We take three uniformly-spaced samples: two for the noise (one before, one after the pulse) and one
with signal + noise, subtracting the formers from the latter. Pick the sampling times, sketch the
weighting function (with values), and compute S/N.

3. We now take four uniformly-spaced samples: two for the noise, both before the pulse, and two for
signal + noise. Pick the sampling times, sketch the weighting function (with values), and compute
S/N. Consider unit-area delta functions for ease of calculations.

4. The four samples can be taken at any time. Is there a different smart choice of the sampling times with
respect to #2.37 Propose it and evaluate S/N. Extra points for a quantitative comparison between
this result and #2.3 (hint: expand in series assuming t; < 717,).

Allowed time: 2 hours 45 minutes — Do a good job!

Results will be posted by February 215t Mark registration: Thursday, February 23™



Solution

Problem 1
1.1
We obviously have V' = V= = V,. To solve the circuit we could use the superposition principle, but the

expressions are fairly lenghty. We then proceed by analysis, writing the KCL at the midpoint between the
two resistors R (at voltage V7):
Vo—Wi
R

1% 14+ sCR
TV m V=R = i =Yy er

Equalling the currents in input capacitor C and upper R, we immediately get:

sC(Vi = V) = VO]_%Vla

where we substitute the previous value of Vi, obtaining:

Vo  sCR(2+sCR)  sCR(2+ sCR)

V; 1+4+2sCR+ (sCR)?2  (1+sCR)?

We have one zero at DC and at f, = 1/7CR ~ 1 Hz and two coincident poles at f, = f./2 = 0.5 Hz. Note
that beyond those frequencies the gain is one.

1.2

We ground the input and cut both loops at the OA output, where we apply a test signal Vs and obtain
V™ =V,. Toget V1, it is simpler to write a couple of KCLs at the nodes, as in # 1.1. However, let’s follow
an impedance approach: we call Z the impedance beyond the feedback capacitor, i.e.

1 1+ sCR
Z=Rl <R+sc> = M asor
we immediately get
Z 1 sCR

V+:V:9 =Vs ;
Z+4+1/sC1+sCR 1+ 3sCR+ (sCR)?

leading to
(1+ sCR)?

1+3sCR+ (sCR)?

This approach is simpler to write, but more prone to errors. We now have two zeros at 0.5 Hz and two

Gloop = —A(s)

negative poles at

P 3+v56 14Hz

"2 T orCR 2 0.2 He
The circuit is obviously stable: poles and zeros fall at very low frequencies, where |Gjo0p| > 1, and beyond
that range we have Gjoop = —A(s). The phase margin is hence 90° and foqp = GBW P.

1.3
For frequencies much higher than the singularities added by the capacitors, we can regard them as short-
circuits. It is then straightforward to obtain

Sy, =Sy 4+ Sr2R)?> =107 4+4x 107" ~ 4 x 107" V2/VHz,

V2= SVOgGBWP = (177 uV)2.

If we wanted to account for resistor noise as well, we would see that the two R resistors give no contribution
at HF, leaving only the 2R element, that gives Sy, = 4kpT(2R) ~ 3 x 107 V2 /v/Hz, negligible indeed.
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Figure 1: Left = Bode plot of real and asymptotic loop gains for the non-compensated (NC) and compensated
(C) condition. Right = Weighting function (green) and its time correlation (red, only shown for
non-negative «y) for the case in #2.3.

1.4

The small parasitic capacitance introduces a pole at high frequency, where capacitors C' can be safely regarded
as short-circuits. The loop scheme then simplifies, with capacitor C; connected between the inverting input
and ground and giving a pole at f, = 1/(47C;R) ~ 200 kHz, i.e., a phase margin smaller than 45°. We can
then use a simple lead compensation, connecting a compensation capacitor C. in parallel to resistor 2R. If
we pick C. = C; we have a zero at 200 kHz while the pole goes to 100 kHz; the circuit is now stable (pole
and zero are very close and their phases cancels out). Bode diagrams are plotted in Fig. 1 (left).

Problem 2

2.1
Assuming that the signal starts at ¢ = 0, we sample the noise at ¢t = 0~ and the signal at ¢t = t, (or —t4 and
0"). The time correlation of the weighting function is then

k’ww(')’) = 25(7) - 5(|7| - ts)a

from which
S A

N V22 (1 - e~te/Tn)

2.2
The first and third sample are taken at 0~ and 7", respectively, so the second one falls at 7'/2. The weighting
function (WF) is then

w(t,7) =—=6(1)+20(r —=T/2) —6(r = T),

from which

kuww(v) = 66(v) —40(|y[ = T/2) +6(|v| = T)

and
S 2A

N Jon? (3 - ae /20 4 o1/
If we consider T' > tg, the result in # 2.1 is better.

2.3
The best choice is to sample the noise at —ts and 07, followed by the signal (+ noise) samples at t; and 2t.
The WF is then:

w(t,7) = =0(T +ts) — 0(7) + 6(7 — ts) + 6(7 — 2ty),
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Figure 2: Left = Weighting function (green) and its time correlation (red, only shown for non-negative =)

for the case in #2.4. Right = comparison between #2.3 and #2.4.

whose time correlation is

kww () = 46(y) + 07| — ts) — 26(|7] — 2t) — 0(|| — 3ts).
Both quantities are shown in Fig. 1, right. This leads to

s 24
N \/2ﬁ (2+ ets/Tn — 2e=2ts/Tn — ¢=3Ls/Tn)

2.4
An alternative solution is to place one noise and signal (+ noise) delta couple at the beginning of the pulse
(0~ and t) and one at the end (T —t5 and 7). The WF is then

w(t,7) = =6(17) +0(1 —ts) +0(7 — (T —t5)) — (1 = T),
whose time correlation is now
Fww () = 46(7) = 20(|y| = ts) + 0 (| = (T = 2t)) = 26(|7[ = (T' = ts)) + 6(|v[ = 1),
as shown in Fig. 2 (left). The result is then

5 24
N \/QE (2 = 2e~ts/Tn 4 e (T=26)/To — 2e—(T—ts)/Tn 4 ¢=T/Tn)

For a comparison between the last two results, we can just look at the terms within parenthesis. Calling
x = ts/T,, we have

#2.3: 22 f e 32

#24: 2—2e72 4 T/Tu (1 — 72,
If we expand at first order, we get 6x for 2.3 and 4 for 2.4 (note in fact that the term e~ T/Tn multiplies a
second-order term in ). Fig. 2 (right) shows such terms as a function of z, in the two extreme cases T > T,,
and T < T,.



