
Electronics – July 19 2023 Prof. A. Spinelli

For a correct evaluation, please write your answers in a readable way; thank you
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Solving 6 points correctly gives you 30/30

Problem 1
The scheme in the left figure is used to measure the CMRR of OA1 in DC. Parameters are R = 1 kΩ,
k = 500, C = 1 µF and Vcm = 5 V. OAs have low-frequency gain of 114 dB and GBWP = 10 MHz. The
output is defined as Vo = Vo2 − Vcm.

1. Find the gain of the stage under ideal conditions.

2. Compute the loop gain at DC. Extend then the calculation to the general case.

3. Compute the output rms noise voltage considering the equivalent noise sources of the OAs
√
SV =

15 nV/
√
Hz,

√
SI = 25 pA/

√
Hz and resistors (4kBT ≈ 1.646× 10−20 J).

4. Consider the finite CMRR of the OAs and evaluate Vo at DC.

Problem 2
A sensor outputs rectangular signals with amplitude A ≈ 1 mV and duration T = 500 ns. A WN with bilater
PSD λ = 10−13 V2/Hz is also present at the sensor output. The signal is sent to the cascade of an LPF and
a GI.

1. Pick a (reasonable) value for TF and evaluate S/N at the LPF output.

2. Consider the filter made up of LPF + GI. Compute the output signal and the weighting function.

3. Evaluate the output noise and the resulting S/N . What is the best value of TF ?

4. The signal has now a right triangular shape, decaying from A to zero in a time T . Suggest the best
choice for TF and evaluate the resulting S/N (hint: find a smart solution to avoid lengthy calculations).

Allowed time: 2 hours 45 minutes – Do a good job!

Results will be posted by July 24th Mark registration: Thursday, July 27th



Solution

Problem 1

1.1
Under ideal conditions, Vcm is applied to both input of OA1, meaning that no current flows in the feedback
resistors and Vo2 = Vcm. The output voltage Vo2 − Vcm is then zero.

1.2
We open the external loop, replacing the OA2 block with its closed-loop transfer G2(s), obtaining:

Gloop =
1

k
A(s)G2(s).

The ideal transfer of the OA2 block is −(R + 1/sC)/R = −(1 + sCR)/sCR, i.e., an integrator at low
frequencies and unity gain for frequencies larger than 1/(2πCR) ≈ 160 Hz. To evaluate the poles added by
OA2, we can consider the high-and low-frequency limits. At HF (C is a short-circuit):

|Gid| = 1, |GOL| = |A(s)|/2 ⇒ fp = GBWP/2,

which means that the zero-dB crossing frequency of Gloop is determined by A(s)/k: f0dB = GBWP/k =
20 kHz. At LF (C is an open circuit) we have instead:

|Gid| = 1/(ωCR), |GOL| = A0 ⇒ fp = 1/(2πA0CR),

that is the same behavior as the standard integrator, discussed in class. The DC value of the loop gain is
then A2

0/k. The loop gain is reported in Fig. 1 (left).
We now carry on the full calculations for G2, just for the sake of completeness:

Gloop = −A(s)
R

2R+ 1/sC
= −A(s)

sCR

1 + 2sCR

G2 =
Gid

1− 1/Gloop
= −

1 + sCR

sCR

1 +
1 + 2sCR

sCRA(s)

= − A(s)(1 + sCR)

1 + (A(s) + 2)sCR
=

− A0(1 + sCR)

1 + s(τ + 2CR+A0CR) + 2s2CRτ
≈ − A0(1 + sCR)

1 + sA0CR+ 2s2CRτ
,

where τ is the OA pole (at 20 Hz) time constant. Approximated solutions for the poles are then

fp1 =
1

2πA0CR
= 0.3 mHz fp2 =

1

2π

A0CR

2CRτ
=

A0

4πτ
=

GBWP

2
= 5 MHz,

and Gloop becomes

Gloop ≈ −A0

k

A0(1 + sCR)

(1 + sτ)(1 + sA0CR+ 2s2CRτ)
,

If we had cut both loops, we would have obtained

Gloop = − A(s)

1 + 2sCR

(
sCR+

A(s)

k
(1 + sCR)

)
≈ −A0

k

A0 + sCRA0 + s2kCRτ

(1 + sτ)2(1 + 2sCR)
.

As expected, the two expressions differ, but the stability condition (not requested here) is the same: the
reader can verify it by computing the zeros of 1 − Gloop. Also remember that the latter expression cannot
be used with Gid to obtain the closed-loop gain, but that GOL is required.
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Figure 1: Left = Bode plot of real and asymptotic gains. Right = weighting function of the cascade filter for
different values of TF .

1.3
Noise sources due to the OA2 block do not give any contribution to the output noise, as they are placed
inside the external feedback loop (in other words, their ideal gain is zero). We are then left to the voltage
and NI input current source of OA1 plus external resistors, resulting in:

Vo = Vo2 = kVn + (k − 1)RIn ⇒ SVo = k2SV + (k − 1)2R2SIn = 14.7 µV/
√
Hz,

where SIn = SI + 4kBT/R+ 4kBT/((k − 1)R) ≈ 25.3 pA/
√
Hz. The total output noise is then

V 2
o = SVo

π

2
f0dB = (2.6 mV)2

1.4
The voltage at the NI input of OA1 is

V + = Vcm
k − 1

k
+ Vo2

1

k
≈ Vcm +

Vo

k
.

Given that V − = Vcm, we obtain a common-mode voltage equal to Vcm and a differential mode voltage
Vdm = Vo/k. OA1 output voltage is then

Vo1 = AcmVcm +Adm
Vo

k
.

OA2 has Vdm = Vo1 and Vcm = Vo1/2, hence

Vo = AdmVo1 +Acm
Vo1

2
= Vo1

(
Adm +

Acm

2

)
⇒ Vo1 = Vo

1

Adm +
Acm

2

.

Substituting the expression, we get

AcmVcm = −Vo

Adm

k
− 1

Adm +
Acm

2

 ≈ −Vo
Adm

k
⇒ Acm

Adm
= − Vo

kVcm
⇒ CMRR = 20 log10

Vo

kVcm
.

For example, if Vo = 250 mV, the resulting CMRR would be 80 dB. Please note that neglecting the second
term in the parenthesis amounts to consider Vo1 = 0, i.e., neglecting the non-idealities of OA2.



Problem 2

2.1
The expression for S/N is

S

N
= A

(
1− e−T/TF

)√2T

λ
.

If we pick the filter time constant as TF = T/5 = 100 ns, we get S/N ≈ 1.4.

2.2
We remember that w(t, τ) is the response in t to a delta function applied in τ and consider a time τ1: the
LPF response to a delta function is a decaying exponential function,

yLPF (τ) =
1

TF
e−(τ−τ1)/TF h(τ − τ1),

which is in turn integrated in the to − t window. We set t0 = 0 for simplicity in the calculations, obtaining

yGI(t, τ1) = K

∫ t

0
yLPF dτ =


K

∫ (t−τ1)/TF

0
e−xdx = K

(
1− e−(t−τ1)/TF

)
∀τ1 > 0

Keτ1/TF

∫ t/TF

0
e−xdx = Keτ1/TF

(
1− e−t/TF

)
∀τ1 < 0

When seen as a function of the delta arrival time τ1, this is the WF, sketched in Fig. 1 (right). If a formal
derivation is desired, we can work in the frequency domain. In the GI case we have

y(t) =

∫
X(f)W ∗

GI(t, f)df =

∫
Vi(f)WLP (f)W

∗
GI(t, f)df,

from which
W (t, f) = WGI(t, f)W

∗
LP (f) ⇒ w(t, τ) = wGI(t, τ) ∗ wLP (t,−τ)

The output signal can be computed from the WF, i.e.

Vo(t) =

∫
Vi(t)w(t, τ)dτ = AK

∫ t

0

(
1− e−(t−τ)/TF

)
dτ = AK

(
t− TF

(
1− e−t/TF

))
.

Of course, this result can also be obtained by looking at the block scheme: the output is the integral of the
LPF step response.

2.3
For the case of input WN, the output mean square noise is

n2
o = λ

∫
w2(t, τ)dτ = λK2

∫ t

0

(
1− e−(t−τ)/TF

)2
dτ + λK2

(
1− e−t/TF

)2 ∫ 0

−∞
e2τ/TF dτ =

λK2TF

(∫ t/TF

0

(
1− e−x

)2
dx+

∫ 0

−∞
e2xdx

)
= λK2TF

(
t

TF
+ e−t/TF − 1

)
.

As for the signal, the result could have been obtained by considering a GI with an input noise with exponential
autocorrelation (output of the LPF fed with WN).
Picking the integration time t equal to the pulse duration T = 500 ns we have S/N = 2 for TF = 100 ns.
The best value of TF is obviously zero, because the GI is the optimum filter for the rectangular pulse. In
this case we obtain (S/N)opt = 2.24.

2.4
For the case of a right triangular signal, the best choice is to pick TF ≫ T , so that the shape of the WF in
the t0 − t interval mimics the signal, creating again an optimum filter. The resulting S/N will then be:

S

N
=

A√
λ

√∫ T

0

(
1− t

T

)2

dt = A

√
T

3λ
= 1.29.


