
Electronics – July 19 2024 Prof. A. Spinelli

For a correct evaluation, please write your answers in a readable way; thank you
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Solving six points correctly gives you 30/30

Problem 1
The scheme in the left figure is a preamplifier for an accelerometer, schematized by a current source and its
capacitance Cs = 1.2 nF. Parameters are R1 = 100 MΩ, R2 = 17 kΩ, R3 = 2 kΩ, C = 1.25 nF, T = 40 s.
The OA has A0 = 120 dB and GBWP = 4 MHz.

1. Neglect the integrator block and R3 (for this point only) and evaluate the ideal gain.

2. Repeat the previous point for the full circuit (consider R1 ≫ R2, R3). What is the purpose of the
integrator block?

3. Compute the high-frequency output noise voltage PSD and rms value considering the equivalent voltage
noise source of the OA

√
SV = 20 nV/

√
Hz.

4. Suggest a realization for the integrator block in the above scheme using only one OA. Hint: think of
the standard integrator and tweak its input.

Problem 2
A sensor outputs a current signal made of two delta pulses with charge Q ≈ 5 fC separated by T = 80 ms.
The sensor, with a capacitance of C = 500 pF is connected to a voltage amplifier with gain G = 10 and
equivalent input noise

√
SI = 1 pA/

√
Hz,

√
SV = 4 nV/

√
Hz.

1. Compute the output signal and noise PSD.

2. Compute the weighting function of the optimum filter.

3. Compute the optimum S/N .

4. SV and SI have a flicker component with the same noise corner frequency fnc. What is the maximum
value of fnc that allows to neglect the flicker noise (in the previous optimum filter case)? Hint: consider
the noise sources after the whitening filters and find a suitable approximation for |W (f)|2 in the FN
case.

Allowed time: 2 hours 45 minutes – Do a good job!

Results will be posted by July 24th Mark registration: Friday, July 26th



Solution

Problem 1

1.1
Without the integrator block and R3, the feedback network is the parallel of C and R1 + R2. The output
voltage is then

Vo

Is
=

R1 +R2

1 + sC(R1 +R2)
≈ R1

1 + sCR1
.

1.2
We label Vm the node between R1 and R2 and write the KCL:

Vm

R1
+

Vm − Vo

R2
+

Vm − Vo

sT
R3

= 0 ⇒ Vo

(
1

R2
+

1

sTR3

)
= Vm

(
1

R1
+

1

R2
+

1

R3

)
≈ Vm

(
1

R2
+

1

R3

)
,

from which
Vm = Vo

sTR3 +R2

sT (R2 +R3)
.

The KCL at the input node of the OA gives then

Is = sCVo +
Vm

R1
⇒ Vo

Is
=

sTR1(R2 +R3)

s2TCR1(R2 +R3) + sTR3 +R2
.

We now have a zero in the origin and two coincident poles (the quality factor is 0.5023) at 67 mHz, beyond
which the gain follows the result in #1.1. A Bode plot of the gain is reported in Fig. 1 (left). The zero in
the origin cancels any effect related to offset and bias currents of the OA.

1.3
At HF, the impedances of the capcitors is small and the feedback network is dominated by C (note that the
output of the integrator is almost zero). We have then a partition between Cs and C, i.e.,

Vo = Vn
C + Cs

C
⇒ SVo = SV

(C + Cs)
2

C2
≈

(
39 nV/

√
Hz

)2

and

Gloop = −A(s)

1

sCs

1

sCs
+

1

sC

= −A(s)
C

C + Cs
,

i.e., f0dB = GBWP C/(C + Cs) ≈ 2 MHz, leading to

V 2
o ≈ SV

(C + Cs)
2

C2

π

2
f0dB ≈ (69 µV)2 .

Full calculation (still considering R1 ≫ R2, R3) leads to

Vo = Vn
sT (R2 +R3)(1 + s(C + Cs)R1)

s2TCR1(R2 +R3) + sTR3 +R2
,

from where the HF limit can be recovered.

1.4
The standard integrator is obviously inverting, so to achieve the desired result we should apply the input at
the NI input of the OA. But this result in

Vo

Vi
= 1 +

1

sCR
=

1 + sCR

sCR
,

which is good apart from the zero. To cancel it, we can apply an LPF at the input, resulting in the scheme
of Fig. 1 (right), that gives the desired result.
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Figure 1: Left = Circuit gain with (yellow) and without (red) the integrator stage. Right = scheme for a NI
integrator.

Problem 2

2.1
The current signal is integrated by the capacitor C, resulting in a rectangular signal at the amplifier output:

Vo = Is
1

sC
G ⇒ Vo(t) =

QG

C

∫
(δ(t)− δ(t− T )) dt =

QG

C
rect(0, T ),

where rect is the unit-amplitude rectangular function. The output noise is instead

Vo =

(
Vn +

In
sC

)
⇒ SVo = G2

(
SV +

SI

(ωC)2

)
= G2SV

1 + ω2C2SV

SI

ω2C2SV

SI

= G2SV
1 + ω2T 2

n

ω2T 2
n

,

where Tn = C
√
SV /SI ≈ 2 µs.

2.2
As the noise PSD is not white, a whitening filter is needed, whose TF Hw is given by

SVo |Hw|2 = const ⇒ |Hw| ∝
1√
SVo

= K
ωTn√

1 + (ωTn)2
⇒ Hw(s) =

sTn

1 + sTn
,

i.e., an LTI HPF. This filter obviously affects the signal as well, that now becomes (remember the step
response of the HPF):

Vw(s) = Vo(s)Hw(s) =
QG

sC

(
1− e−sT

) sTn

1 + sTn
⇔ Vw(t) =

QG

C

(
e−t/Tnu(t)− e−(t−T )/Tnu(t− T )

)
.

The second stage W2 of the optimum filter is now a matched filter with weighting function proportional to
Vw(t). In the frequency domain, we have then

W2(T, f) =
1− e−jωT

1 + ωTn
|W (T, f)| ∝ |Hw(f)||W2(T, f)| =

(
1− e−jωT

) ωTn

1 + (ωTn)2
.

Note that the expression of W is equal to Vo(f)|Hw(f)|2, and could have been obtained as Vo(f)/SVo(f).

2.3
To compute S/N , we can look at the whitening filter output and remember that(

S

N

)
opt

=
Q

C
√
SV /2

√
2

∫ ∞

0
e−2t/Tndt =

Q

C

√
2Tn

SV
= 5,



where the factor of 2 before the integral accounts for the two equal exponential signals that do not overlap.
Of course, the same result can be obtained from(

S

N

)
opt

=
Q

C

√∫
|X(f)|2
SV (f)/2

df,

considering again only the first delta function (and multiplying by two), obtaining

(
S

N

)
opt

=
Q

C

√√√√√√√√2

∫ ∣∣∣∣ 1ω
∣∣∣∣2

SV

2

1 + (ωTn)
2

(ωTn)2

dω

2π
=

Q

C

√
2Tn

πSV

∫
dωTn

1 + (ωTn)2
=

Q

C

√
2Tn

SV
.

2.4
Beyond the whitening filter, the noise PSD is equal to G2SV (f), that now contains both white and flicker
components. The WN contribution is then

n2
WN = G2SV

∫
w2
2(t, τ)dτ = 2G2SV

1

4Tn
= G2 SV

2Tn
,

where we have considered the matched filter amplitude 1/Tn. For FN we need to switch to the frequency
domain, where the input noise is SV fnc/f and

n2
FN = G2SV fnc

∫ ∞

0

|W 2
2 (t, f)|2

f
df = G2SV fnc

∫ ∞

0

|1− e−jωT |2

|1 + jωTn|2
dω

ω
= 2G2SV fnc

∫ ∞

0

1− cosωT

1 + (ωTn)2
dω

ω
.

The HF limit is set by fH = 1/(2πTn). At low frequencies, where the denominator equals 1, the numerator
goes to zero as f → 0 and then oscillates between 0 and 2, with average value equal to one, behaving like an
HPF. A nice guess for fL could be as follows: at low frequencies we have

1− cosωT ≈ (ωT )2

2
,

while an HPF with time constant TL has a square modulus of the transfer function equal to (ωTL)
2. Equalling

the terms, we get

TL =
T√
2
⇒ fL =

1

2πTL
=

1√
2πT

≈ 1

4.4 T

from which we get

n2
FN ≈ 2G2SV fnc log

(
fH
fL

)
≈ 2G2SV fnc log

(
2.2 T

πTn

)
≈ 20.5 G2SV fnc.

To get equal contributions, we must have

20.5 G2SV fnc = G2 SV

2Tn
⇒ fnc =

1

41Tn
= 12.2 kHz.

This value is quite high, meaning that our filter is effective in reducing LF noise.
Please note that a simpler estimate of fL based on

1− cosωT = 1 ⇒ ωLT =
π

2
⇒ fL =

1

4T

returns a very similar value (12.5 kHz) for fnc.


