
Electronics – June 19 2024 Prof. A. Spinelli

For a correct evaluation, please write your answers in a readable way; thank you

C1C2

R1

R1

R2

Vo

A

T Tf

t

Solving six points correctly gives you 30/30

Problem 1
The scheme in the left figure behaves like an impedance. The OA has A0 = 100 dB and GBWP = 1 MHz.
Parameters are R1 = 68 kΩ, R2 = 1.2 kΩ, C1 = 0.56 µF, C2 = 56 nF.

1. Evaluate the ideal impedance at the circuit output.

2. Evaluate the loop gain (with open-circuit output) and discuss the stability.

3. Compute the (open-circuit output) noise voltage PSD considering the equivalent voltage noise source
of the OA

√
SV = 10 nV/

√
Hz.

4. Compute the short-circuit output noise current PSD due to SV . Hint: find a smart solution to avoid
calculations.

Problem 2
A current pulse Ax(t) with A ≈ 300 nA and T = 5 µs is shown in the right figure. The signal goes through a
current amplifier with gain G = 300, bandwidth of 10 MHz, and equivalent input noise

√
SI = 80 pA/

√
Hz.

1. Design and sketch a simple LPF that can provide an output signal with amplitude of 1 V and S/N > 10.
Comment on the result.

2. Evaluate the optimum value of S/N when Tf = T .

3. Consider now Tf = kT with k ≫ 1 and assume (for this point only) an additional current noise source
with white unilateral PSD Snsx(t) proportional to the signal. Find a reasonable and justified choice
for the integration window of a GI and compute the resulting S/N for Sns = SI .

4. Compute the optimum integration window for k ≪ 1 (hint: set TG = T + T ′
G and evaluate S/N as a

function of T ′
G/Tf , correctly neglecting higher-order terms in k).

Allowed time: 2 hours 45 minutes – Do a good job!

Results will be posted by June 26th Mark registration: Friday, June 28th



Solution

Problem 1

1.1
Capacitor C1 is obviously in series with the rest of the circuit; we can then remove it and consider it later
for simplicity. We apply then a test voltage VT at the node after C1 and evaluate the current provided. The
current flowing through the lower R1 − C2 series connection is

I1 = VT
sC2

1 + sC2R1
⇒ V + = I1R1 = VT

sC2R1

1 + sC2R1
= V −.

But V − is also equal to the output voltage of the OA, as no current flows through the upper resistor R1.
The current flowing in R2 is then

I2 =
VT − V −

R2
=

VT

R2

(
1− sC2R1

1 + sC2R1

)
=

VT

R2

1

1 + sC2R1
,

leading to a total current provided by the voltage source equal to

I = I1 + I2 = VT
sC2

1 + sC2R1
+

VT

R2

1

1 + sC2R1
=

VT

R2

1 + sC2R2

1 + sC2R1
.

The total impedance is then

Z =
VT

I
+

1

sC1
= R2

1 + sC2R1

1 + sC2R2
+

1

sC1
=

1 + s(C1 + C2)R2 + s2C1C2R1R2

sC1(1 + sC2R2)
.

The poles are at zero and fp = 1/(2πC2R2) ≈ 2.4 kHz. Note that the zeros are complex! Approximate
solutions would return fL ≈ 1/(2π(C1 + C2)R2) ≈ 215 Hz and fH ≈ (C1 + C2)/(2πC1C2R1) ≈ 46 Hz, that
cannot be correct! We have then fz = 1/(2π

√
C1C2R1R2) = 100 Hz. The Bode plot is shown in Fig. 1 (left).

1.2
To compute Gloop, we open the circuit at the OA output and apply the test voltage, obtaining:

V + = VT
R1

R1 +R2 +
1

sC2

= VT
sC2R1

1 + sC2(R1 +R2)

and V − = VT . This leads to

Vo = A(s)(V + − V−) = A(s)

(
sC2R1

1 + sC2(R1 +R2)
− 1

)
⇒ Gloop = −A(s)

1 + sC2R2

1 + sC2(R1 +R2)
,

with a pole at 41 Hz and a zero at 2.4 kHz. Beyond those frequencies, Gloop ≈ −A(s)R2/(R1+R2), meaning
that the zero-dB crossing frequency is f0dB = GBWP R2/(R1 +R2) ≈ 17 kHz.

1.3
The scheme for the calculation is shown in Fig. 1 (right), where we have again neglected C1, in which no
current flows. The voltage at the OA NI input is

V + = Vo
sC2R1

1 + sC2R1
+ Vn = V −,

and equal to the OA output voltage. We can then write:

Vo = V −
R1 +

1

sC2

R1 +R2 +
1

sC2

= Vn
1 + sC2R1

1 + sC2R2
.

The (non requested) rms output noise voltage is (fp = 1/2πC2R2 ≈ 2.4 kHz)

V 2
o ≈ SV

R2
1

R2
2

(f0dB − fp) ≈ (86 µV)2 .
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Figure 1: Left = Asymptotic (red) and real (blue) Bode plots of Z. Right = scheme for noise calculation.

1.4
In the previous point we have computed the open-circuit output voltage, while the output impedance Z was
evaluated in #1.1. Converting this into a Norton equivalent circuit, we immediately get

Io =
Vo

Z
= Vn

sC1(1 + sC2R1)

1 + s(C1 + C2)R2 + s2C1C2R1R2
.

Problem 2

2.1
The value of S/N at the output of the amplifier is

S

N
=

A√
SI(π/2)BW

> 10 ⇒ BW <
2A2

100πSI
≈ 90 kHz.

As the signal is a current, the LPF is an R− C parallel (not series!) and its component values are:

R =
1

AG
≈ 11 kΩ C =

1

2πBWR
> 160 pF.

Note that the associated time constant is RC ≈ 1.7 µs, which means that in reality the maximum signal will
not reach the amplitude A, but rather A(1− eT/RC) = 0.95A and S/N is slightly degraded. the full solution
for S/N = 10 leads to BW ≈ 72 kHz (time constant of about 2.2 µs), but in this case the measured signal
is reduced to 0.9A = 270 nA.

2.2
Labelling λ = SI/2 the bilateral PSD, the optimum value of S/N is

S

N
=

A√
λ

√∫
x2(t)dt =

A√
λ

√
T +

∫ Tf

0

(
1− t

Tf

)2

dt =
A√
λ

√
T +

Tf

3
= A

√
4T

3λ
≈ 13.7.

2.3
If k is very large, we can neglect the flat top of the pulse and consider a right triangular signal. The
non-stationary white noise contribution at the end of the integration window is then

n2
ns(TG) = G2

∫ TG

0
λ(α)w2(TG, α)dα = λnsG

2TG

2

(
2− TG

Tf

)
,
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Figure 2: Left = optimum value of TG/Tf as a function of the ratio of the noise PSDs. Right = optimum
integration time over the falling edge as a function of Tf/T .

where G is the GI gain and λns = Sns/2. This leads to an expression for S/N equal to

(
S

N

)
= A

TG

2

(
2− TG

Tf

)
√

λTG + λns
TG

2

(
2− TG

Tf

) = A

√
Tf

2λ

x(2− x)√
2x+

λns

λ
x(2− x)

,

where x = TG/Tf . For the case of white stationary noise only, we know that the optimum value of x is 2/3.
We also know from theory that for non-stationary noise with PSD proportional to the signal, the optimum
integration window extends over the whole signal, i.e., x = 1. In the general case it is then 0.67 < x < 1.
For λns = λ and – say – x = 0.75, the second term is about 0.6 and we get S/N ≈ 5

√
k. Fig. 2 (left) shows

the optimum value of x as a function of λns/λ.

2.4
The gate time will extend over the falling part of the pulse, so we label TG = T + T ′

G, and obtain

(
S

N

)
= A

T +
T ′
G

2

(
2−

T ′
G

kT

)
√

λ(T + T ′
G)

⇒
(
S

N

)2

=
A2T

λ

[
1 +

kx

2
(2− x)

]2
1 + kx

,

where x = T ′
G/kT lies between 0 and 1. For small values of k we neglect the term in k2 at the numerator,

obtaining (
S

N

)2

≈ A2T

λ

1 + kx(2− x)

1 + kx
=

A2T

λ

[
1 + k

x− x2

1 + kx

]
.

For small values of k we can now neglect the k term at the denominator and note that the maximum of
x− x2 is at x = 0.5. The optimum integration window extends to one half of the falling edge of the pulse!

As a reference, if one wishes to maximize S/N in the general case, it is wise to express the x-dependent part
of it as [

1 +
kx

2
(2− x)

]2
1 + kx

=

[
(1 + kx)− k

2
x2

]2
1 + kx

= 1 + kx− kx2 +
k2

4

x4

1 + kx
.

Zeroing its derivative, we obtain

1− 2x+ k
x3

1 + kx
− k2

4

x4

(1 + kx)2
= 0 ⇒ 3k2x4 + 4k(1− 2k)x3 + 4k(k − 4)x2 + 8(k − 1)x+ 4 = 0.

For k = 1, x = (
√
7− 1)/3 ≈ 0.55; for k = 2, x = 1/

√
3 ≈ 0.58. The solution is shown in Fig. 2 (right).


