
Electronics – February 7 2024 Prof. A. Spinelli

For a correct evaluation, please write your answers in a readable way; thank you
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Solving six points correctly gives you 30/30

Problem 1
The scheme in the left figure is a power buffer for capacitive loads. The OA has A0 = 126 dB and GBWP =
20 MHz. The buffer stage (BUF) has unity gain and output resistance Ro = 6 Ω. Other parameters are
Rc = 2 kΩ, Cc = 1 nF.

1. Consider Ro = 0 and compute the ideal and loop gains.

2. Evaluate the maximum value of CL that grants a phase margin larger than 45◦ when Ro is not zero.

3. Compute the output rms noise voltage considering the equivalent noise sources of the OA and BUF√
SV = 20 nV/

√
Hz,

√
SI = 10 pA/

√
Hz. Consider again R0 = 0 for simplicity.

4. Would it be convenient to use a simpler scheme without Rc and Cc, having the OA connected as
follower and BUF driving the load? Why?

Problem 2
Because of different electron and hole mobilities, a semiconductor sensor outputs a signal made up of two
triangular pulses with different amplitudes (A1, A2) and durations (T1 T2, with T2 > T1). T1 and T2 are due
to the sensor design and are hence known. We want to measure the amplitude A1 in presence of white noise
with bilateral PSD λ. Note that A2 is not known.

1. Consider two GIs plus basic electronics (sum, difference, etc.). Propose a measurement scheme with
its parameter values and sketch the resulting weighting function.

2. Evaluate S/N .

3. Consider now a shot-like white noise with PSD λ proportional to the signal, i.e., with two triangular
components with PSD amplitudes λ1 and λ2. Compute the new output noise.

4. Consider a repetitive signal. Would it be convenient to employ boxcar averagers in the non-stationary
white noise case of #2.3? If yes, would the improvement in S/N follow the

√
Neq law even in this case,

or not? Justify your answers.

Allowed time: 2 hours 45 minutes – Do a good job!

Results will be posted by February 9th Mark registration: Tuesday, February 13th



Solution

Problem 1

1.1
As the BUF gain is one and Ro = 0, Vo is the voltage at the OA output. Hence, there can be no current
flowing into Rc and Cc, meaning that Vi = V0. The ideal gain is therefore one.
To compute Gloop, we cut the loop at the OA output and apply a test voltage Vs. Once again, no current
can flow into the feedback network, and we obtain V − = Vs, i.e.

Gloop = −A(s).

1.2
The scheme for Gloop calculation is shown in Fig. 1 (left). We label V1 the voltage drop on CL and write
(remember that the BUF output is also at Vs):

Vs − V1

Ro
= sCLV1 +

V1 − V −

Rc
V1

(
1

Rc
+

1

Ro
+ sCL

)
=

Vs

Ro
+

V −

Rc

⇒
V1 − V −

Rc
= sCc(V

− − Vs)
V1

Rc
= V −

(
1

Rc
+ sCc

)
− sCcVs

from which, after some algebra

V −

Vs
=

1 + sCc(Rc +Ro) + s2CcCLRcRo

1 + sCc(Rc +Ro) + sCLRo + s2CcCLRcRo
≈ 1 + sCcRc + s2CcCLRcRo

1 + s(CcRc + CLRo) + s2CcCLRcRo
,

that means

Gloop = −A(s)
1 + sCcRc + s2CcCLRcRo

1 + s(CcRc + CLRo) + s2CcCLRcRo
= −A(s)

1 + sτc + s2τcτL
1 + s(τc + τL) + s2τcτL

,

where we set for simplicity τc = CcRc e τL = CLRo. If τL ≪ τc, i.e., CL ≪ CcRc/Ro = 0.33 µF,
Gloop ≈ −A(s) and stability is ensured. We then consider the other extreme, where τL ≫ τc and

Gloop ≈ −A(s)
1 + sτc + s2τcτL
1 + sτL + s2τcτL

.

Approximate pole positions are f1 = 1/2πτL and f2 = 1/2πτc ≈ 80 kHz, while zeros are complex at a
frequency fz = 1/(2π

√
τLτc). This means that for frequencies higher than f2, we still have Gloop ≈ −A(s),

and the system remains stable for any capacitor value. Loop gain is shown in Fig. 1 (right). Further
discussion is in the Appendix.

1.3
The OA voltage noise is transferred with unity gain, like the signal, while its NI current noise gives no
contribution. So does the current noise of the BUF, leaving the OA I input current noise and BUF voltage
noise. With simple calculations we get

SVo = SVOA
+ SIOA

∣∣∣∣ R

1 + sCcRc

∣∣∣∣2 + SVBUF

∣∣∣∣ sCcRc

1 + sCcRc

∣∣∣∣2 .
Considering that the zero-dB frequency of Gloop is equal to the GBWP , we have

V 2
o = SV

π

2
GBWP + SIR

2
c

1

4CcRc
+ SV

(
π

2
GBWP − 1

4RcCc

)
≈ 1.26× 10−8 + 5× 10−11 + 1.26× 10−8 ≈ 2.52× 10−8 V2 = (158 µV)2.
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Figure 1: Left = Loop gain calculation scheme. Right = Resulting loop gain in the 103 − 107 Hz range for
CL = 100 nF (blue) and 10 µF (red). Solid lines = actual gain, dashes = asymptotic approximation.

1.4
The proposed solution has the disadvantage of having a pole set by the RoCL time constant, hence depending
on the load conditions. Moreover, keeping BUF outside the loop means that its offset, non-linearity and
other unwanted drawbacks affect the output.

Problem 2

2.1
In principle, any two measurements can be used to extract A1. However, a simple choice is to evaluate A2

from an integration in the T1 − T2 interval (or 2/3 of it) and subtract this value from an integration in the
0− T1 interval. The GI outputs are

V1 = A1G1
T1

2
+A2G1T1

(
1− T1

2T2

)
= A1

T1

2
G1 +A2

T1(2T2 − T1)

2T2
G1

V2 = A2G2

(
1− T1

T2

)
T2 − T1

2
= A2

(T2 − T1)
2

2T2
G2,

where G1 and G2 are the GI gains. We then set

G2 = G1
T1(2T2 − T1)

(T2 − T1)2

and subtract V2 from V1. Setting G1 = 2K/T1 returns Vo = KA1. The WF is sketched in Fig. 2 (left).

2.2
The output noise is simply

V 2
0 = λ

∫ T2

0
w2(t, τ)dτ =λ

(
G2

1T1 +G2
2(T2 − T1)

)
= λG2

1T1

(
1 +

T1(2T2 − T1)
2

(T2 − T1)3

)
=

λG2
1T1T2

T 2
2 + T1T2 − T 2

1

(T2 − T1)3
,

from which (
S

N

)
=

A1

2
√
λ

√
T1(T2 − T1)3

T2(T 2
2 + T1T2 − T 2

1 )
.

For example, considering T1 = 1 µs, T2 = 2 µs and K = 1 the noise becomes V 2
0 = λ× 40× 106.
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Figure 2: Left = possible weighting function for measuring A1. Right = output noise as a function of Tg1

(red) and Ts2 (blue) for T1 = 1 µs, T2 = 2 µs and K = 1.

2.3
The output mean square noise for a non-stationary white noise is (see class notes):

n2
out(t) =

∫
λ(τ)w2(t, τ)dτ.

The filter output is collected at t = T2, where we get

n2
out(T2) =G2

1

∫ T1

0

[
λ1

(
1− τ

T1

)
+ λ2

(
1− τ

T2

)]
dτ +G2

2λ2

∫ T2

T1

(
1− τ

T2

)
dτ

=G2
1

[
λ1

T1

2
+ λ2T1

(
1− T1

2T2

)
+

G2
2

G2
1

λ2
(T2 − T1)

2

2T2

]
= G2

1

T1

2

[
λ1 + λ2

T2(2T2 − T1)

(T2 − T1)2

]
.

2.4
The answer is yes to both questions. BAs improve S/N (by the square root of the number of equivalent
samples) whenever the noise is not correlated over different samples, which is indeed the case here!

To conclude, we briefly discuss the optimization of the GI parameters. It makes sense to start the first inte-
gration from 0, as the signal is maximum there. Analogously, it is reasonable to stop the second integration
at 2/3 of the T1 − T2 interval. We are then left with the gate time of the first GI, Tg1, and the starting
time of the second GI, Ts2. The output noise as a function of such parameters is shown in Fig. 2 (right) for
T1 = 1 µs, T2 = 2 µs and K = 1; note that the optimum values are Tg1 ≈ 0.36 µs and Ts2 ≈ 0.7 µs.

Appendix
The results in #1.2 do not guarantee that the circuit is actually useful for any value of CL. In fact, if we
compute the (ideal) closed-loop gain, we get (labelling V1 the OA output):

V1 − Vo

Ro
= sCLVo +

Vo − Vi

Rc

V1 − Vo

Rc
= sCc(Vi − V1),

⇒ Vo

Vi
=

1 + sCc(Rc +Ro)

1 + sCc(Rc +Ro) + s2CcCLRoRc

and the closed-loop poles might be complex. To ensure this is not the case, we must have

C2
c (Rc +Ro)

2 > 4CcCLRoRc ⇒ CL < Cc
(Rc +Ro)

2

4RoRc
≈ Cc

Rc

4Ro
= 83 nF.

If a small amount of oscillation might be tolerated (quality factor of the poles equal to one), the requirement
becomes the one already discussed in #1.2, i.e.

CL < Cc
Rc

Ro
= 0.33 µF.


