Electronics — June 19 2024 Prof. A. Spinelli

For a correct evaluation, please write your answers in a readable way; thank you ‘

Solving six points correctly gives you 30/30

Problem 1
The scheme in the left figure behaves like an impedance. The OA has Ay = 100 dB and GBW P = 1 MHz.
Parameters are Ry = 68 k), Ry = 1.2 k2, C; = 0.56 uF, Cy = 56 nF.

1. Evaluate the ideal impedance at the circuit output.
2. Evaluate the loop gain (with open-circuit output) and discuss the stability.

3. Compute the (open-circuit output) noise voltage PSD considering the equivalent voltage noise source

of the OA /Sy = 10 nV/vVHz.

4. Compute the short-circuit output noise current PSD due to Sy. Hint: find a smart solution to avoid
calculations.

Problem 2
A current pulse Az(t) with A ~ 300 nA and 7' =5 us is shown in the right figure. The signal goes through a
current amplifier with gain G = 300, bandwidth of 10 MHz, and equivalent input noise v/S; = 80 pA/+v/Hz.

1. Design and sketch a simple LPF that can provide an output signal with amplitude of 1 V and S/N > 10.
Comment on the result.

2. Evaluate the optimum value of S/N when Ty =T

3. Consider now Ty = kT with k> 1 and assume (for this point only) an additional current noise source
with white unilateral PSD S,,s2(¢) proportional to the signal. Find a reasonable and justified choice
for the integration window of a GI and compute the resulting S/N for S,s = S;.

4. Compute the optimum integration window for k£ < 1 (hint: set Tg = T + T, and evaluate S/N as a
function of T(, /T, correctly neglecting higher-order terms in k).

Allowed time: 2 hours 45 minutes — Do a good job! ‘

Results will be posted by June 26" Mark registration: Friday, June 28"



Solution

Problem 1

1.1

Capacitor C is obviously in series with the rest of the circuit; we can then remove it and consider it later
for simplicity. We apply then a test voltage Vr at the node after C7 and evaluate the current provided. The
current flowing through the lower Ry — (' series connection is

sCo sCa Ry
L=Vp—2 vyt —[R =Vp 2
! r 1+ sCoR, 1 r 1+ sCoR,

But V™ is also equal to the output voltage of the OA, as no current flows through the upper resistor Rj.
The current flowing in Ry is then

I_VT_Vi_ﬁ 1 sCoRy _ﬁ 1
2= Ry B Ry 1+ sCoR, a Ro1+ 802R17
leading to a total current provided by the voltage source equal to

sCy Vi 1 . Vr 1+ sCyRs

I=1 I, =V — — Lt TTere
1+ 42 Tl + sCyRy + Ro 1+ sCyRy Ry 1+ sCyRy

The total impedance is then

7 _ ﬁ n L _R 1+ sCyRy n 1 B 1+ S(Cl + CQ)RQ + 82C102R1R2

o I SCl T 1 + SCQRQ SCl - SCl(l + SCQRQ) '
The poles are at zero and f, = 1/(2nC2R2) ~ 2.4 kHz. Note that the zeros are complex! Approximate
solutions would return fr ~ 1/(27(Cy + C2)R2) =~ 215 Hz and fg ~ (C1 + C3)/(2rC1C2R1) ~ 46 Hz, that

cannot be correct! We have then f, = 1/(2n/C1C2R1 R2) = 100 Hz. The Bode plot is shown in Fig. 1 (left).

1.2
To compute Gjoop, We open the circuit at the OA output and apply the test voltage, obtaining:

Ry sCy Ry

Vt=Vp =Vr
1
Ri+ Ry 4+ — 1+ sCy(R1 + Ro)
sCy

and V'~ = Vp. This leads to

sCoRy 14+ sCyRs

Vo= Al)(VT = Vo) = Als) <1 +5Co(Ry + Ry) 1) = Cloon = = A0,k + )

with a pole at 41 Hz and a zero at 2.4 kHz. Beyond those frequencies, Gjoop = —A(s)Ra/(R1+ R2), meaning
that the zero-dB crossing frequency is fogg = GBW P Ry/(Ry + R2) ~ 17 kHz.

1.3
The scheme for the calculation is shown in Fig. 1 (right), where we have again neglected C7, in which no
current flows. The voltage at the OA NI input is

SCQRl

Vi=V,————+V, =V,
1+ SCQRl +
and equal to the OA output voltage. We can then write:
1
R+ —
VoV L sCy . 14 sCoRy

o — 1 - n .

Ry+ Ryt — 1 1sCR
SCQ

The (non requested) rms output noise voltage is (f, = 1/2nCoRy ~ 2.4 kHz)

2

—5 R
VZ & Sy (foas — fp) = (86 uV)*.
2
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Figure 1: Left = Asymptotic (red) and real (blue) Bode plots of Z. Right = scheme for noise calculation.
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1.4
In the previous point we have computed the open-circuit output voltage, while the output impedance Z was
evaluated in #1.1. Converting this into a Norton equivalent circuit, we immediately get

I = E . 501(1 + SCQRl)
/AR S(Cl + CQ)RQ + 52C1C9R 1 Ry '
Problem 2
2.1
The value of S/N at the output of the amplifier is
A 2A2
§:—>10:>BW<7Q5901{HZ.
N Si(m/2)BW 1007Sy

As the signal is a current, the LPF is an R — C parallel (not series!) and its component values are:

R:izllkﬁ C

160 pF.
AG s BWR = 100P

Note that the associated time constant is RC ~ 1.7 us, which means that in reality the maximum signal will
not reach the amplitude A, but rather A(1 —e?/5¢) = 0.954 and S/N is slightly degraded. the full solution
for S/N = 10 leads to BW =~ 72 kHz (time constant of about 2.2 us), but in this case the measured signal
is reduced to 0.94 = 270 nA.

2.2
Labelling A = S7/2 the bilateral PSD, the optimum value of S/N is

S A A Ty t\?2 A T AT
- 2(4)dt = —— T+/ (1—) dt:—\/TqL—f:A\/—zlS.?.
N VA /x() ﬁ\/ 0 Ty NG) 3 3\

2.3

If k is very large, we can neglect the flat top of the pulse and consider a right triangular signal. The
non-stationary white noise contribution at the end of the integration window is then

_ Ta T T
Te) = 6 [ Ma)u(Ts,a)da = 2,62 C (2 - G) |
0
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Figure 2: Left = optimum value of Tz /T as a function of the ratio of the noise PSDs. Right = optimum
integration time over the falling edge as a function of T /T.

where G is the GI gain and \,5 = S,,5/2. This leads to an expression for S/N equal to

<S>:A T2G<2 gj) \/TT o2-x)
N \/)\TG+/\n52 <2—> \/ 2(2 — z)

where x = Tz /T. For the case of white stationary noise only, we know that the optimum value of x is 2/3.
We also know from theory that for non-stationary noise with PSD proportional to the signal, the optimum
integration window extends over the whole signal, i.e., x = 1. In the general case it is then 0.67 < z < 1.
For \ps = A and — say — = = 0.75, the second term is about 0.6 and we get S/N ~ 5v/k. Fig. 2 (left) shows
the optimum value of z as a function of A,s/A\.

2.4
The gate time will extend over the falling part of the pulse, so we label Tz = T' 4 T, and obtain

T, T4 kx 2
N) AT +T7) N) A 1+ke

where z = T}, /kT lies between 0 and 1. For small values of k we neglect the term in k% at the numerator,

obtaining
S 2NA2T1+I<:$(2—$)7A2T . km—:c2
D\ 1+kx A 1+ kx|’

N

For small values of k we can now neglect the k term at the denominator and note that the maximum of

x — 2% is at = 0.5. The optimum integration window extends to one half of the falling edge of the pulse!

As a reference, if one wishes to maximize S/N in the general case, it is wise to express the z-dependent part
of it as

kx 2 k 5]
[1 + ?(2 — a:)} [(1 + kx) — 2x2] 2
= =1+ka—ka?+ =
1+ kz 1+ kz ke = ke 4 T
Zeroing its derivative, we obtain
3 ]{32 334
122+ k" = 0= 3k% +4k(1 — 2k)2® + 4k(k — 4)2* +8(k — 1)z +4 = 0.

1+ ks 4 (14 kx)?

For k= 1,2 = (/7 —1)/3 ~ 0.55; for k = 2,2 = 1/v/3 ~ 0.58. The solution is shown in Fig. 2 (right).



