
Electronics January 20 2025 Prof. A. Spinelli

For a correct evaluation, please write your answers in a readable way; thank you
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Solving six points correctly gives you 30/30

Problem 1
The scheme in the left figure is a line driver for audio applications. Parameter values are R1 = 1 kΩ,
R2 = 4 kΩ, R3 = 100 Ω, C = 39 pF. The OA has A0 = 120 dB and GBWP = 15 MHz. The (ideal) buffer
stage has unity gain.

1. Evaluate the ideal gain (be careful!).

2. Evaluate the loop gain and discuss the stability.

3. Compute the output noise voltage PSD due to the the equivalent voltage noise sources of the amplifiers,√
SV = 4 nV/

√
Hz.

4. Consider a unit step voltage at the input. What is the minimum value of the OA slew rate that grants
a linear response?

Problem 2
A sensor outputs rectangular signals of amplitude A = 1 mV and unknown width T ranging from Tmin = 10 ns
to Tmax = 1 µs, on top of a white noise with unilateral PSD

√
SV = 20 nV/

√
Hz. A gated integrator is used

to measure T , followed by an ADC with input range between 0 and 5 V, as shown in the right figure.

1. Set the integration time of the GI and evaluate the minimum detectable value of T .

2. Find the GI gain and the minimum number of ADC bits to ensure a correct detection.

3. A flicker noise with corner frequency fnc = 50 kHz is present at the GI input. Find the expression of
S/N when an HPF with time constant TF is placed before the GI.

4. Find the optimum value of TF for the case of flicker noise only (consider that the equation log(x/π) =
−1/(2x) has approximate solution x = 0.17).

Allowed time: 2 hours 45 minutes – Do a good job!

Results will be posted by January 23rd Mark registration: Wednesday, January 29th



Solution

Problem 1

1.1
At first, we know that the buffer stage has a high input impedance (is a voltage amplifier), so no current
flows in R3 that can be neglected, and the voltage Vo is also present at the OA output.
Now, as the differential input voltage of the OA is zero, the voltage at the R1 −R2 midpoint is Vi, and the
current in R1 flows via C and R2, that behave as if they are in parallel! The expression for the gain becomes
then

Vo

Vi
= 1 +

R2 ∥ 1/sC

R1
=

R1 +R2

R1

1 + sC R1 ∥ R2

1 + sCR2
.

The amplifier has a gain of 5 up to a bandwidth fp = 1/(2πCR2) = 1 MHz, that drops to 1 beyond
fz = 1/(2πC R1 ∥ R2) = 5 MHz.

1.2
We break the loop at the OA output and apply a test voltage VT . Recalling what said before, we can write:

V − = VT
R1

R1 +R2 ∥ 1/sC
,

from which
Gloop = −A(s)

R1

R1 +R2 ∥ 1/sC
= −A(s)

R1

R1 +R2

1 + sCR2

1 + sC R1 ∥ R2
.

Pole and zero positions are 1 and 5 MHz, respectively, beyond which Gloop follows −A(s) and the system
remains stable with phase margin of 90◦ and f0dB = GBWP = 15 MHz. As a side comment, it is interesting
to note that the circuit remains stable even if the pole added by the buffer bandwidth is considered, thanks
to C. Calculations are in the Appendix..

1.3
The voltage noise source of the OA is subjected to the same transfer as the input signal. As for the noise
of the buffer, we can refer to the scheme in Fig. 1: the voltage at the OA output is Vo − Vn, and the OA
inverting input is grounded, meaning that no current flows in R1. The voltage divider between R2 and C
leds then to (linear superposition):

V − = Vo
1

1 + sCR2
+ (Vo − Vn)

sCR2

1 + sCR2
= 0 ⇒ Vo = Vn

sCR2

1 + sCR2
,

from which we obtain the final expression:

Vo = V OA
n

R1 +R2

R1

1 + sCR1 ∥ R2

1 + sCR2
+ V BUF

n

sCR2

1 + sCR2

SVo = SOA
V

(
R1 +R2

R1

)2 ∣∣∣∣1 + sC R1 ∥ R2

1 + sCR2

∣∣∣∣2 + SBUF
V

∣∣∣∣ sCR2

1 + sCR2

∣∣∣∣2 ,
which leads to

V 2
o ≈ SOA

V

π

2

((
R1 +R2

R1

)2

fp +GBWP − fz

)
+ SBUF

V

π

2
(GBWP − fp) =

16× 10−18π

2

(
25× 106 + 107

)
+ 16× 10−18π

2
14× 106 = 8.8× 10−10 + 3.5× 10−10 = (35 µV)2 .

1.4
We can start from the ideal gain and write

Vo(s) = 5
1 + sτz
1 + sτp

1

s
= 5

(
1

s
− τp − τz

1 + sτp

)
⇒ vo(t) = 5

(
1− τp − τz

τp
e−t/τp

)
u(t) =

(
5− 4e−t/τp

)
u(t),
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Figure 1: Left = Scheme for buffer noise calculation. Right = Step response according to ideal and real
transfers. The inset shows the initial transient with the discussed approximation.

which is plotted in Fig. 1 (right, blue curve). The step-like behavior at t = 0 would require an infinite SR,
which means that we must consider the real gain, with the extra pole at f0dB. Before starting a full analytical
treatment, let’s try an approximate analysis: we need to evaluate the effect of an extra pole at high frequency
(time constant τ0 = 1/(2πf0dB) ≈ 10.6 ns) on the previous expression, controlled by τp = CR2 = 156 ns.
So, for times comparable to τ0, the ideal output does not change very much from 1 V, its value at t = 0+.
In this range, we can then approximate the true output with the step response:

vo(t) ≈
(
1− e−t/τ0

)
u(t) ⇒ dvo

dt

∣∣∣∣
max

=
1

τ0
≈ 94 V/µs.

For the full calculation, it is easier to start from the previous expression, obtaining:

Vo(s) =

(
5

s
− 4

τp
1 + sτp

)
1

1 + sτ0
=

5

s

1

1 + sτ0
− 4

τp
τp − τ0

(
τp

1 + sτp
− τ0

1 + sτ0

)
.

The first term is the LPF step response, and the second is made up of two exponentials, leading to

vo(t) = 5
(
1− e−t/τ0

)
u(t)− 4

τp
τp − τ0

(
e−t/τp − e−t/τ0

)
u(t),

from which
dvo
dt

∣∣∣∣
max

=
dvo
dt

∣∣∣∣
t=0

=
5

τ0
+ 4

τp
τp − τ0

(
1

τp
− 1

τ0

)
=

1

τ0
.

The full output is also shown in Fig. 1 (right), where the inset shows the behavior for short times with the
discussed approximation (yellow).

Problem 2

2.1
Not knowing the pulse width, the integration time TG must account for the worst case, i.e., TG = Tmax = 1 µs.
Setting the output S/N to one, we obtain

S

N
=

AT√
SV Tmax/2

= 1 ⇒ Tmin =

√
SV Tmax/2

A
≈ 14 ns.

2.2
To exploit the full range of the ADC, its maximum input signal (corresponding to Tmax) must be equal to
5 V. The GI gain must therefore be:

Vmax = GATmax = 5 V ⇒ G = 5× 109 s−1,⇒ Vmin = GATmin = 70.5 mV,
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Figure 2: Left = Pulse response of an HPF and integral between 0 and Tmax of the output signal. Right =
S/N as a function of the HPF time constant TF when different noise contributions are considered.

which defines the LSB. We have then:

5 V

2n
< Vmin ⇒ n > 6.15,

meaning that in practice we need an 8-bit ADC. Please note that setting the condition that the quantization
error (that you may have seen in other classes) is smaller than 70.5 mV results in n > 6.38.

2.3
The output FN contribution is evaluated between fmax = 1/(2TG) and fHP = 1/(2πTF ), leading to

n2
FN = G2T 2

GK log

(
πTF

TG

)
,

while for the output signal we need to consider the HPF pulse response and its integral over a time TG = Tmax.
The signal and its integral are reported in Fig. 2 (left), from which we obtain the GI output signal as

Vo = GATF

(
eT/TF − 1

)
e−Tmax/TF ,

leading to the expression for S/N :

S

N
=

ATF

(
eT/TF − 1

)
e−Tmax/TF

Tmax

√
K log

(
πTF
Tmax

)
+ SV

(
1

2Tmax
− 1

2πTF

) .
2.4
The worst case is obviously T = Tmin ≪ TF , so we can expand in series the first exponential term:(

S

N

)2

≈ A2

K

T 2
min

T 2
max

e−2x

log(π/x)
= −A2

K

T 2
min

T 2
max

e−2x

log(x/π)
,

where x = Tmax/TF . Differentiating and zeroing the x-dependent part, we get

−2e−2x log
(x
π

)
− e−2x

x
= 0 ⇒ log

(x
π

)
= − 1

2x
⇒ x ≈ 0.17 ⇒ TF = 5.8 µs.

The dependence of S/N on TF is shown in Fig. 2 (right) when different noise contributions are considered.
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Figure 3: Left = Scheme for loop calculation. Right = Gloop for the cases of τB = 10.6 ns (15 MHz bandwidth)
and 106 ns (1.5 MHz bandwidth).

Appendix
We can account for the buffer pole by writing its transfer as

T =
1

1 + sτB
,

obtaining the scheme in Fig. 3 (left) for the loop calculation. By linear superposition, we get:

V −

VT
=

R1 ∥ R2

R1 ∥ R2 + 1/sC
+

1

1 + sτB

R1 ∥ 1/sC

R1 ∥ 1/sC +R2
=

=

(
sC R1 ∥ R2

1 + sC R1 ∥ R2
+

1

1 + sτB

R1

R1 +R2 + sCR1R2

)
=

R1

R1 +R2

1

1 + sC R1 ∥ R2

(
sCR2 +

1

1 + sτB

)
=

R1

R1 +R2

1 + sCR2 + s2CR2τB
(1 + sτB)(1 + sC R1 ∥ R2)

⇒ Gloop = −A(s)
R1

R1 +R2

1 + sCR2 + s2CR2τB
(1 + sτB)(1 + sC R1 ∥ R2)

.

We can see that τB adds also a zero, which improves stability. We can now consider two limiting cases:
For a large-bandwidth buffer, τB is small and we can approximate the numerator as discussed in the class,
obtaining:

Gloop ≈ −A(s)
R1

R1 +R2

(1 + sCR2)(1 + sτB)

(1 + sτB)(1 + sC R1 ∥ R2)
,

i.e., a pole-zero cancellation. This leaves a zero at 1 MHz and a pole at 5 MHz, with phase margin of about
90◦.
If instead τB is large (which does not make much sense in reality, as the buffer has to drive the output), the
zeros become complex at a frequency fz = 1/(2π

√
CR2τB), that could fall after the τB pole and eventually

not being able to increase the phase margin. However, this happens only for τB ≫ CR2 (for τB = 10CR2

the phase margin is still 84◦).


