
Electronics February 14 2025 Prof. A. Spinelli

For a correct evaluation, please write your answers in a readable way; thank you
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Solving six points correctly gives you 30/30

Problem 1
The scheme in the left figure is a two-OA instrumentation amplifier. Parameter values are R1 = 20 kΩ,
R2 = R3 = 2 kΩ, R5 = 450 Ω. The OAs have A0 = 100 dB and GBWP = 1 MHz.

1. Find the value of R4 that allows to reject the common mode.

2. Evaluate the differential gain.

3. Compute the output rms noise voltage due to the equivalent current noise source of one of the amplifiers,√
SI = 2 pA/

√
Hz. Consider the other OA as ideal.

4. Evaluate the CMRR due to the finite OA gain (hit: consider only the most critical one).

Problem 2
A sensor outputs triangular current signals of amplitude A ≈ 10 nA and width T = 1 ms, on top of a white
noise with unilateral PSD

√
SI = 40 pA/

√
Hz (right figure).

1. Evaluate the maximum achievable S/N .

2. Consider now a gated integrator. Find the optimum integration window and compute the new S/N .

3. A sinusoidal interference Id sin(ωdt+ϕ) with Id = 10 mA and fd = 300 kHz is present at the GI input.
Design an LPF to be placed before the GI to lower the interference output to 1/10 of the signal output.

4. Besides SI , both signal and interference are also subjected to shot noise. Provide an estimate of the
new value of S/N .

Allowed time: 2 hours 45 minutes – Do a good job!

Results will be posted by February 19th Mark registration: Friday, February 21st



Solution

Problem 1

1.1
Under common-mode bias, no current flows in R5, that can be neglected. So, V1 sees a non-inverting followed
by an inverting amplification, while V2 experiences a non-inverting transfer:

Vo = −V1

(
1 +

R2

R1

)
R4

R3
+ V2

(
1 +

R4

R3

)
.

Setting V1 = V2 and Vo = 0 we obtain
R2R4

R1R3
= 1 ⇒ R4 =

R1R3

R2
= R1 = 20 kΩ.

1.2
We now consider V2 = −V1 = Vd/2 and write the KCL at the inverting input pin of OA1:

Vd

2R1
+

Vo1 + Vd/2

R2
+

Vd

R5
= 0 ⇒ Vo1 = −Vd

(
1

2
+

R2

R5
+

R2

2R1

)
,

where Vo1 is the output voltage of OA1. The KCL at the inverting input of OA2 gives then the result
(remember the condition set in 1.1):

Vo − Vd/2

R4
− Vd

R5
+

Vo1 − Vd/2

R3
= 0 ⇒ Vo

Vd
= 1 +

R4

R3
+

2R4

R5
= 100.

1.3
The scheme for noise calculations is reported in Fig. 1 (left). We begin with OA1 and the noise current
source placed at its NI input (which is at zero voltage). No current can flow in R1 and R5, and

Vo1 = −In1R2 ⇒ Vo = In1R2
R4

R3
= In1R1.

To compute the loop gain of OA1, we see that R1 and R5 are in parallel, because of the OA2 virtual ground
(see Fig. 1, right), leading to:

Gloop = −A(s)
R1 ∥ R5

R2 +R1 ∥ R5
= −A(s)

1

5.54
⇒ f1

0dB =
GBWP

5.54
= 180 kHz,

leading to
V 2
o = SIR

2
1

π

2
f1
0dB ≈ (21 µV)2 .

As for OA2, the ideal transfer is simply:
Vo = In2R4,

as no current flows in R3 and R5. For the loop calculation, we must now consider that OA1 acts as an
inverting amplifier with gain −R2/R5 (see scheme in Fig. 1, right), and we can now write the KCL, simpler
than linear superposition in this case:
V − − VT

R4
+

V −

R5
+

V − + (R2/R5)V
−

R3
= 0 ⇒ V − =

VT

100
⇒ Gloop = −A(s)

100
⇒ f2

0dB =
GBWP

100
= 10 kHz,

and
V 2
o = SIR

2
4

π

2
f2
0dB ≈ (5 µV)2 .

1.4
The amplifier to consider here is OA1, whose finite gain will affect Vo1, resulting in a non-exact cancellation
at the OA2 output. Under common-mode bias, we neglect R5 and write

Vo1 = Vc

(
1 +

R2

R1

)
1

1− 1/Gloop
= Vc

(
1 +

R3

R4

)
1

1− 1/Gloop
,

leading to
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Figure 1: Left = Scheme for current noise calculation. Right = Schemes for loop gain calculations.

Vo = −R4

R3
Vo1 + Vc

(
1 +

R4

R3

)
=

(
1 +

R4

R3

)
1

1−Gloop
Vc =

11

1−Gloop
Vc.

Gloop = −A(s)/5.54 has been already computed in #1.3, while the differential-mode gain is 100. Setting
A(s) = A0/(1 + sτ), we obtain

CMRR =
Adm

Acm
=

100

Acm
=

100

11

(
1 +

A(s)

5.54

)
≈ 1.64

A0 + 5.54sτ

1 + sτ
,

which is shown in Fig. 2 (left). Note that the pole of A(s) degrades the high-frequency CMRR even with
perfect resistor matching.

Problem 2

2.1
The maximum S/N is obtained with an optimum filter, that in this case mimics the shape of the signal, i.e.,

w(t, τ) ∝ 1− 2|t|
T

∀|t| ≤ T,

where the zero time reference has been moved to correspond to the signal maximum. We have then(
S

N

)
opt

=
A√
SI/2

√∫ T/2

−T/2

(
1− 2|t|

T

)2

dt = A

√
T

SI

√
2

3
= 6.46.

2.2
We know from theory that the optimum integration time for the case of a right triangular signal is equal to
2/3 of the pulse width. The same is true here, as the signal is symmetric with respect to its maximum value,
meaning that we can consider only the t ≥ 0 part and multiply signal and mean square value of the noise by
a factor of two. We then get:

Vo = 2A

∫ T/3

0

(
1− 2t

T

)
dt =

4

9
GAT,

where G is the GI gain, and

V 2
o = 2G2SI

2

T

3
= G2SI

T

3
,

from which (
S

N

)
= A

√
T

SI

4

3
√
3
= 6.09.

Please note that S/N is degraded by about 6% when moving from an optimum filter to a much simpler gated
integrator.
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Figure 2: Left = CMRR as a function of frequenct. Right = Transfer function of a 1, 2, and 3-pole LPF at
10 kHz and the attenuation at the interfering frequency. The inset shows the output signal for the
cases considered.

2.3
The GI output signal due to the interference is

Do = GId

∫ T/3

−T/3
sin(ωdt+ ϕ)dt = Id

G

ωd
(cos(−ωdT/3 + ϕ)− cos(ωdT/3 + ϕ)) < 2Id

G

ωd
,

where we have considered the worst case in which the sinusoidal terms of unit amplitude add in phase. This
is much larger than the signal:

Vo

D
=

4π

9

A

Id
fdT = 4.2× 10−4.

Given that the signal BW is about 1 kHz, we can set the LPF frequency to fp = 10 kHz. However, this leads
to a reduction in the interference amplitude by a factor of 30, which is not enough. Since we cannot lower
fp without affecting the signal, the only option is to increase the order of the filter! A second-order filter
provides 302 = 900, still not good enough! We need a third-order filter, giving an attenuation of 303 = 27000,
bringing the interference down to about 13% of the signal! The filter transfer function is shown in Fig. 2
(right); the inset shows the effect on the signal, which is largely unaffected (the peak reduction is about 5%).

2.4
The signal shot noise PSD has a maximum value of

Ss = 2qA =
(
56 fA/

√
Hz

)2
≪ SI ,

and can be neglected. The maximum interference shot noise is instead

Sd = 2qId =
(
56 pA/

√
Hz

)2
,

and must be accounted for. We can consider again the worst case, taking the maximum value of the shot
noise PSD, obtaining: (

S

N

)
= A

√
T

SI + Sd

4

3
√
3
= 3.54.


