

N POLITECNICO DI MILANO

Electronics – 96032

Sensors: basic concepts

Alessandro Spinelli Phone: (02 2399) 4001 alessandro.spinelli@polimi.it h

home.deib.polimi.it/spinelli

Slides are supplementary material and are NOT a replacement for textbooks and/or lecture notes

- Convert an input physical property (the *stimulus*) to a different one (usually an electrical signal). Sensors are «energy converters»
- You can find many disquisitions on the difference between sensors and transducers, which I gladly leave to your rainy day reading

Sensor classification

- Measurand
 - Temperature, pressure, velocity, current,...
- Detection mean
 - Biological, chemical, electrical, mechanical,...
- Sensor material
 - Semiconductor, organic, liquid,...
- Field of application
 - Scientific, industrial, medical,...

Sensor characteristics

- Static parameters
 - Transfer function, accuracy, resolution,...
- Dynamic parameters
 - Frequency response, settling time,...
- Other parameters
 - Operating and storage conditions, reliability,...

I-O characteristic

When used as detectors, the inverse function is needed

6

Alessandro Spinelli – Electronics 96032

POLITECNICO DI MILANO

• Defined as the ratio between output and input variations

$$S = \frac{dS_o}{dS_i}$$

- Linear sensors have constant sensitivity
- Linear approximations can be used in other cases, over a limited input range. Otherwise, data processing is required

(Non)Linearity error

Maximum difference between the real transfer function and its linear approximation

Which linear characteristic?

્ર 100 100 End point at 100% 100 Span of output (%) Span of output (%) Span of output Theoretical line Line through BSL through zero end points 100 0 O End point at zero 100 0 100 Span of input (%) Span of input (%) Span of input (%)

From [5]

Different straight lines can be defined (end points, least squares,...), giving different NL errors

10

Independent nonlinearity

Adopts the straight line that minimizes the maximum (absolute) NL error

- Is the smalllest increment in stimulus that can be sensed, specified in absolute quantity or percentage of FS input
- Resolution is ultimately determined by the noise of the sensor itself
- Other factors (noise of electronics front-end, digitization,...) can further degrade it

- Is the ability of the sensor to reproduce the same result after repetitive experiments
- Precision is not resolution
 - A digital clock may have ms resolution but worse precision
 - The terms are often (mis)used interchangeably

- Accuracy is the maximum deviation from the ideal value
- The average value should be considered for each sensor in presence of a strong random component

Accuracy vs. precision

POLITECNICO DI MILANO

Dynamic parameters

- Frequency response
- Response/settling time
- Bandwidth
- ...

- 1. http://www.analog.com/media/en/training-seminars/designhandbooks/Practical-Design-Techniques-Sensor-Signal/Section2.PDF
- 2. J. Fraden, «Handbook of modern sensors», Springer (2004)
- 3. www.scienceprog.com/characteristics-of-sensors-and-transducers/
- 4. sales.hamamatsu.com/assets/applications/SSD/nmos_kmpd9001e04.pdf
- 5. iopscience.iop.org/00223727/45/22/225305/article
- 6. J. Fraden, «Handbook of modern sensors», Springer (2010)
- 7. J. Webster, ed., «Measurement, instrumentation and sensor handbook», CRC Press (1999)
- 8. www.sensortips.com/pressure/accuracy-vs-resolution/