

N POLITECNICO DI MILANO

Electronics – 96032

Deformation and Temperature Sensors

Alessandro Spinelli Phone: (02 2399) 4001 alessandro.spinelli@polimi.it home.

home.deib.polimi.it/spinelli

Slides are supplementary material and are NOT a replacement for textbooks and/or lecture notes

Purpose of the lesson

- At this point, we know how to analyze and design simple amplifiers
- Effective amplifier design depend upon the input signal characteristics (impedance, bandwidth,...)
- In this part of the class we discuss a few sensor arrangement:
 - Wheatstone bridge (previous lesson)
 - Deformation and temperature sensors (this lesson)
 - Sensor technologies (optional overview)

- Deformation sensors
- Resistive temperature sensors
- Seebeck effect and thermocouples
- Appendix

Stress and strain

• For the uniform case under normal load we define the stress as

$$\sigma = \frac{F}{S}$$

• Strain is the deformation per unit length

$$\varepsilon = \frac{\Delta L}{L}$$

typical values are a few 10^{-3} ; the value is usually expressed in *µstrain*

Materials behavior

In the elastic region, the material will return to its original shape when the stress is removed

• In the elastic region

$$\sigma = E\varepsilon$$

where *E* = Young (or elasticity) modulus

- Axial strain is always accompanied by lateral strains of opposite sign in the two directions perpendicular to the axial strain
- Their ratio is called Poisson ratio

$$\nu = -\frac{\varepsilon_{lateral}}{\varepsilon_{axial}}$$

Poisson ratio and volume change

$$V' = L^3 (1 + \varepsilon)(1 - \nu \varepsilon)^2$$

$$\approx L^3 (1 + \varepsilon (1 - 2\nu))$$

 $\frac{\Delta V}{V} = \varepsilon (1 - 2\nu)$

• If there is no volume change, $\nu = 0.5$

From [3]

• Theoretical limits are $-1 < \nu \le 0.5$

- For compact, weakly compressible materials such as liquids and rubbers, where stress primarily results in shape change, $\nu \rightarrow 0.5$
- For most well-known solids such as metals, polymers and ceramics, $0.25 < \nu < 0.35$
- Glasses and minerals are more compressible, and for these $\nu \rightarrow 0$
- For gases, $\nu = 0$
- Materials with negative Poisson's ratio are called "auxetic" (e.g., Gore-Tex)

Strain gages/gauges

• Convert strain into a resistance change:

$$R = \rho \frac{L}{S}$$
 Piezoresistivity
$$\frac{\Delta R}{R} = \frac{\Delta \rho}{\rho} + \frac{\Delta L}{L} - \frac{\Delta S}{S} = \frac{\Delta \rho}{\rho} + \varepsilon (1 + 2\nu)$$

• The gauge factor (GF) is defined as

$$GF = \frac{\Delta R/R}{\varepsilon} = 1 + 2\nu + \frac{\Delta \rho/\rho}{\varepsilon}$$

Material	GF
Constantans (Ni-Cu alloys)	1.8 - 2.2
Ni-Cr alloys	~1.9
Ni	-12
Pt-Ir	~5
Si (with various impurities)	$\pm 100 - \pm 200$
Poly-Si	± 30

11

Temperature effects

- SG resistance and GF depend on T
- T-compensated gages are available, depending on the substrate material
- Correction curves are also available

Dummy gage compensation

From [9]

- The compensation gage must be unstrained or suitably mounted to increase the output signal
- The temperature should be the same and the two SGs identical

- 1. www.cyberphysics.pwp.blueyonder.co.uk/topics/forces/young_modulus.htm
- 2. www.tutorvista.com/content/physics/physics-iii/solids-and-fluids/elasticity-modulus.php#
- 3. en.wikipedia.org/wiki/Poisson's_ratio
- 4. www.npl.co.uk/reference/faqs/how-many-different-types-of-force-transducer-are-there-(faq-force)
- 5. www.airplanetest.com/dc3.htm
- 6. http://www.onera.fr/news/2006-02.php
- 7. http://last-news24.com/global-semiconductor-strain-gauges-market-2017-hbm-test-and-measurement-micron-instrument-omega-kyowa-electronic-instruments/
- 8. http://www.showa-sokki.co.jp/english/products_e/ae801_e/AE801_e.html
- 9. http://www.vishaypg.com/docs/11054/tn504.pdf
- 10. http://store.chipkin.com/articles/types-of-strain-gauges

- Deformation sensors
- Resistive temperature sensors
- Seebeck effect and thermocouples
- Appendix

Goal is to make T_s as close to T_x as possible

16

Thermal	Electrical
Temperature [K]	Voltage
Heat flow [W]	Current
Thermal resistance [K/W]	Resistance
Heat capacity [J/K]	Capacitance
$Q = \frac{\Delta T}{R_T}$	$I = \frac{\Delta V}{R}$
$Q = C_T \frac{dT}{dt}$	$I = C \frac{dV}{dt}$

Alessandro Spinelli – Electronics 96032

Isolated system + sensor

A small C_s minimizes both static and dynamic errors

Alessandro Spinelli – Electronics 96032

A large R_{se}/R_{sx} is required to improve the sensor accuracy

- Small C_s
 - Small sensor
- Small R_{sx}
 - Good thermal contact ⇒ maximize contact area and (for solids) use good thermal grease
- Large *R_{se}*
 - «Right» sensor connections ⇒ use long, narrow connections with low thermal (and good electrical) conductivity (e.g., stainless steel, lead,...)

- Resistance Temperature Detectors (RTDs) exploit the resistance change with temperature in certain metals
- They can provide highly accurate results (from 0.1 to 0.0001°C) and are used to assign the TP temperatures between about 14 and 1200 K
- Expensive!

Resistance of metals

- Metal resistance increases with T
 - $R = R_0(1 + a_1T + a_2T^2 + \dots + a_nT^n)$
- For small T range, a linear approximation is used, characterized by its relative slope

$$\alpha = TCR = \frac{1}{R_0} \frac{\Delta R}{\Delta T}$$

• *TCR* = temperature coeff. of resistance (usually computed between 100 and 0°C)

Metal	T range [°C]	<i>TCR</i> [°C ⁻¹]
Pt	-200, +850	3.85×10^{-3}
Ni	-100, +200	6.72×10^{-3}
Cu	-100, +250	4.27×10^{-3}
W	-100, +400	4.8×10^{-3}

- Platinum is mostly used for RTDs
 - Chemical inertness
 - Large enough TCR
 - Strain-free fabrication and weak dependence of *R* on strain
 - Almost linear R T relationship
- Resistance at 0°C is usually 100 or 1000 Ω (PT100 or PT1000 RTDs)
- Expensive!

- Made with transition metal (Cr, Co, Cu, Mn, Ni,...) oxides and showing a semiconductor-like behavior
- Strongly non-linear R T characteristic, but with high TCR, either positive (PTC) or negative (NTC)
- NTCs only are useful as sensors

R-T characteristics

- The *R*-*T* characteristics of NTC thermistors follow the intrinsic semiconductor behavior $R(T) = R(T_0) e^{B\left(\frac{1}{T} - \frac{1}{T_0}\right)}$
- Resistance value is usually referenced at 25°C and varies between 100 Ω and 100 $k\Omega$

TCR of NTC thermistors

• The *TCR* can be expressed as

$$TCR = \alpha = -\frac{B}{T^2}$$

- Typical values are -3 to -5×10^{-2} /°C, i.e. about one order of magnitude larger than RTDs
- Owing to the large signal, 3- or 4-wire bridges are usually not necessary
- NTC thermistors are generally used between -50 and +150°C (up to 300°C for some glass-encapsulated units)

PTC thermistors

From [12]

- Polycrystalline ceramic materials made semiconductive by the addition of dopants
- Manufactured using compositions of Ba, Pb, and Sr titanates with additives (Y, Mn, Ta,...)
- Used as overcurrent protection, heaters,...

Sensor self-heating

- Ex. I = 1 mA, $R_{sx} = 1^{\circ}$ C/mW. For a PT100 RTD, $P_s = 100 \mu$ W, i.e., $\Delta T = 0.1^{\circ}$ C
- If lower currents cannot be used, pulsed measurements (with synchronous detection) must be employed

- 1. A. Morris, «Measurement and instrumentation principles», Butterworth (2001)
- 2. J. Webster (ed.), «Measurement, instrumentation and sensors handbook», CRC Press (1999)
- 3. http://www.omega.co.uk/ppt/pptsc.asp?ref=1PT100G_RTD_ELEMENTS
- 4. http://www.rtd-products.co.uk/technical-info.html
- 5. http://www.stegg.com/brochure/sensors/rtds
- 6. http://www.ussensor.com/thin-film-platinum-rtds
- 7. www.designinfo.com/cornerstone/ref/negtemp.html
- 8. www.ge-mcs.com/download/appnotes/ntcnotes.pdf
- 9. J. Fraden, «Handbook of modern sensors», Springer (2004)
- 10. www.weiku.com/products/10198996/NTC_thermistor.html
- 11. www.ussensor.com/surface-mount-end-banded-chip-thermistors-0402
- 12. www.ge-mcs.com/download/appnotes/ptcnotes.pdf

- Deformation sensors
- Resistive temperature sensors
- Seebeck effect and thermocouples
- Appendix

Seebeck effect

From [1]

- A temperature difference between two conductors or semiconductors generates a voltage difference or a current flow
- Discovered accidentally by Thomas Seebeck in 1826

Physical picture

From [2]

Seebeck coefficient

• Is the ratio between voltage drop and thermal gradient

$$S = \frac{dV}{dT}$$

- Aka thermoelectric power
- By convention, the sign of *S* indicates the potential of the cold side with respect to the hot side

Typical values at 0°C

From [3]

Metal	<i>S</i> [μV/K]	Metal	<i>S</i> [μV/K]
Sb	42	Bi	-68
Li	14	К	-13
Мо	4.7	Pd	-9
Cd	2.6	Na	-6.5
W	2.5	Pt	-4.5
Cu	1.6	С	-2
Ag	1.5	AI	-1.6
Та	0.05	Pb	-1.1

POLITECNICO DI MILANO

The sign of *S*

The sign of *S* is related to the energy dependence of the diffusion coefficient, i.e., of the scattering mechanisms

36

Seebeck effect in semiconductors

Er	0	m	2
	U		<u>.</u>

Semiconductor	<i>S</i> [μV/K]
Se	900
Те	500
Si	435
Ge	300
PbTe	-180
PbGeSe	-2000 +1700
BiTe	-230

Much larger than in metals because of the exponential dependence of carrier concentration on temperature (see Appendix)

Measurement of S

 $\Delta V = S \Delta T = 0$

Measurement of S

$$\Delta V = S_A \Delta T - S_B \Delta T = S_{AB} \Delta T$$

Alessandro Spinelli – Electronics 96032

- A circuit made with one conductor will not generate any emf irrespective of the thermal gradient
- A circuit made with two conductors will not generate any emf when isothermal

- Different materials and different temperatures are needed!
- ΔV is only dependent on the junction temperatures, not on the temperature profiles along the wires

Thermocouples are emf sources!

Law of intermediate temperatures

$$V = S_{AB}(T_2 - T_1) = S_{AB}(T_2 - T_0 + T_0 - T_1)$$

= $S_{AB}(T_2 - T_0) - S_{AB}(T_1 - T_0)$

- If the emfs with respect to a reference temperature T_0 are known, they can be used to compute the emf for any ΔT
- For example, is a TC is calibrated for a given temperature T_0 , it can be used with any other T_1 with a simple offset
- Also valid if S = S(T)

$$V = (S_A - S_B)\Delta T = (S_A - S_M + S_M - S_B)\Delta T$$
$$= (S_A - S_M)\Delta T - (S_B - S_M)\Delta T$$

- Is the emfs with respect to a reference electrode *M* are known, they can be used to compute the emf for any couple of metals
- Also valid if S = S(T)

Thermocouple measurements

44

- T₁ is kept stable by using an ice bath and the constant offset is then subtracted
- Impractical in modern systems

Cold junction compensation

- T₁ is measured by a thermistor or RTD and its contribution is subtracted (e.g., via SW)
- Single reference can be used for multi-point

- Open-circuit voltage must be measured
- Thin thermocouple wires are used to reduce $C_s \Rightarrow$ high resistance and noise \Rightarrow keep the TC short and use thicker connection wires
- TCs decalibrate over time due to chemical contamination (recalibration may not be easy)
- Grounded, ungrounded or exposed TC junctions are available

Thermocouple standards

_	
From	161
	IUI

	Thermocouple Standard Type	Metal Content in Positive Leg	Metal Content in Negative Leg	Temperature Range	Av. S [μV/K]
Noble metals	В	70.4% Platinum (Pt), 29.6% Rhodium (Rh)	93.9% Pt, 6.1% Rh	1600 - 3100°F (870 - 1700°C)	10
High sensitivity	Е	90% Nickel, (Ni), 10% Chromium (Cr)	55% Copper (Cu), 45% Ni	32 - 1650°F (0 - 900°C)	68
Inexpensive,	J	99.5% Iron (Fe)	55% Cu, 45% Ni	32 - 1380°F (0 - 750°C)	55
common	К	90% Ni. 10% Cr	95% Ni, 5% Various Elements	32 - 1380°F (0 - 1250°C)	41
	N	84.4% Ni, 14.2% Cr 1.4% Silicon	95.5% Ni, 4.4% Si	32 - 2280°F (0 -1250°C)	37
Noble metals (high T, high- accuracy, low S)	R	87% Pt, 13% Rh	100% Pt	32 - 2640°F (0 - 1450°C)	14
	S	90% Pt, 10% Rh	100% Pt	32 - 2640°F (0 - 1450°C)	12
Low T	Т	100% Copper (Cu)	55% Cu, 45% Ni	-330 - 660°F (-200 - 350°C)	51
	C*	95% Tungsten (W), 5% Rhenium (Re)	74% Tungsten (W), 26% Rhenium (Re)	32 - 4200°F (0 - 2315°C)	15
	D*	97% W, 3% Re	75% W, 25% Re	32 - 4200°F (0 - 2315°C)	19
	G*	100% W	74% W, 26% Re	32 - 4200°F (0 - 2315°C)	

* Not Official ANSI (American National Standards Institute) designations.

Alessandro Spinelli – Electronics 96032

POLITECNICO DI MILANO

Typical data

49

Sensor comparison

From [6]

Sensor	Advantages	Disadvantages
Thermocouple	 Simple, Rugged High temperature operation Low cost No resistance lead wire problems Point temperature sensing Fastest response to temperature changes 	 Least stable, least repeatable Low sensitivity to small temperature changes Extension wire must be of the same thermocouple type Wire may pick up radiated electrical noise if not shielded Lowest accuracy
RTD	 Most stable over time Most accurate Most repeatable temperature measurement Very resistant to contamination/ corrosion of the RTD element 	 High cost Slowest response time Low sensitivity to small temperature changes Sensitive to vibration (strains the platinum element wire) Decalibration if used beyond sensor's temperature ratings Somewhat fragile
Thermistor	 High sensitivity to small temperature changes Temperature measurements become more stable with use Copper or nickel extension wires can be used 	 Limited temperature range Fragile Some initial accuracy "drift" Decalibration if used beyond the sensor's temperature ratings Lack of standards for replacement
Infrared	 No contact with the product required Response times as fast or faster than thermocouples No corrosion or oxidation to affect sensor accuracy Good stability over time High repeatability 	 High initial cost More complex - support electronics required Emissivity variations affect temperature measurement accuracy Field of view and spot size may restrict sensor application Measuring accuracy affected by dust, smoke, background radiation, etc.

POLITECNICO DI MILANO

- 1. http://it.wikipedia.org/wiki/Thomas_Johann_Seebeck
- 2. http://www.kasap.usask.ca/samples/Thermoelectric-Seebeck.pdf
- 3. http://www.electronics-cooling.com/2006/11/the-seebeck-coefficient/
- 4. Y. Pei et al., Energy Env. Sci. 5 (2012)
- 5. M. McGuire et al., J. Solid-State Chem. 184 (2001)
- 6. http://www.metalesindustriales.com/media/File/watlow_sensores.p df
- 7. http://cp.literature.agilent.com/litweb/pdf/5965-7822E.pdf

- Deformation sensors
- Resistive temperature sensors
- Seebeck effect and thermocouples
- Appendix

Seebeck effect in metal: model

• Average energy of electrons in metals

$$E = \frac{3}{5}E_F \left[1 + \frac{5\pi^2}{12} \left(\frac{k_B T}{E_F}\right)^2\right]$$

• The increase in energy after ΔT is

$$\Delta E = \frac{\partial E}{\partial T} \Delta T = \frac{\pi^2 k_B^2 T}{2E_F} \Delta T,$$

balanced by the electrostatic energy $-q\Delta V$. Then

$$S = \frac{\Delta V}{\Delta T} = -\frac{\pi^2 k_B^2 T}{2qE_F}$$

Seebeck effect in semiconductors: model

Drift-diffusion current density:

$$J_n = qn\mu_n F + qD_n \frac{dn}{dx}$$

where $\frac{dn}{dx} = \frac{\partial n}{\partial x} + \frac{\partial n}{\partial T} \frac{dT}{dx} = \frac{\partial n}{\partial x} + n \frac{E_C - E_F}{k_B T^2} \frac{dT}{dx}$
$$J_n = qn\mu_n \left(F + \frac{E_C - E_F}{qT} \frac{dT}{dx}\right)$$
$$J_n = 0 \Rightarrow S = -\frac{dV}{dT} = -\frac{E_C - E_F}{qT}$$

54