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• Most modern-day filters are realized in a digital way
• We review here a discrete-time implementation of the filters

already discussed:

Purpose of the lesson 3

Noise
HF (White) LF (flicker)

Si
gn

al LF (constant) this lesson next lessons
HF (pulse) this lesson next lessons
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• Uniform average
• Non-uniform average

Outline 4
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• A number 𝑁𝑁 of samples of the input signal and noise are acquired 
with sampling time 𝑡𝑡𝑠𝑠

• A suitable weighted average is then performed on the data to 
yield the output

𝑦𝑦 = �
𝑘𝑘=1

𝑁𝑁

𝑤𝑤𝑘𝑘(𝑥𝑥𝑘𝑘 + 𝑛𝑛𝑘𝑘)

Working principle 5
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• In a uniform average 𝑤𝑤𝑘𝑘 = 1/𝑁𝑁

𝑦𝑦 =
1
𝑁𝑁
�
𝑘𝑘=1

𝑁𝑁

(𝑥𝑥𝑘𝑘 + 𝑛𝑛𝑘𝑘)

• We are basically building a discrete-time equivalent of the gated-
integrator:

Uniform average 6

1/𝑁𝑁

𝜏𝜏𝑡𝑡
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Constant signal 𝑥𝑥𝑘𝑘 = 𝐴𝐴 and non-correlated stationary noise 
samples:

�𝑦𝑦 =
1
𝑁𝑁
�
𝑘𝑘=1

𝑁𝑁

(𝐴𝐴 + 𝑛𝑛𝑘𝑘) = 𝐴𝐴 𝑛𝑛𝑦𝑦2 =
1
𝑁𝑁2�

𝑘𝑘=1

𝑁𝑁

𝑛𝑛𝑘𝑘2 =
𝑛𝑛𝑥𝑥2

𝑁𝑁

𝑆𝑆
𝑁𝑁 𝑦𝑦

= 𝑁𝑁
𝑆𝑆
𝑁𝑁 𝑥𝑥

Uniform average 7

i.e., 𝑇𝑇𝑛𝑛 < 𝑡𝑡𝑠𝑠

𝑆𝑆/𝑁𝑁 improves with 
the square root of the 

number of samples
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We set 𝑇𝑇𝐺𝐺 = 𝑇𝑇𝑀𝑀 = 𝑁𝑁𝑡𝑡𝑆𝑆 (total measurement time)

𝑆𝑆
𝑁𝑁 𝐺𝐺𝐺𝐺

=
𝑆𝑆
𝑁𝑁 𝑥𝑥

𝑇𝑇𝑀𝑀
𝑇𝑇𝑛𝑛

𝑆𝑆
𝑁𝑁 𝐴𝐴𝐴𝐴

=
𝑆𝑆
𝑁𝑁 𝑥𝑥

𝑁𝑁 =
𝑆𝑆
𝑁𝑁 𝑥𝑥

𝑇𝑇𝑀𝑀
𝑡𝑡𝑠𝑠

<
𝑆𝑆
𝑁𝑁 𝐺𝐺𝐺𝐺

Comparison with GI 8

(𝑇𝑇𝑛𝑛 < 𝑡𝑡𝑠𝑠)
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• We want to put discrete-time filters into the developed
framework

• For ideal sampling at time 𝑡𝑡𝑠𝑠 we have
𝑦𝑦 𝑡𝑡 = 𝑥𝑥 𝑡𝑡𝑠𝑠 ,

which can be written as

𝑦𝑦 𝑡𝑡 = �𝑥𝑥 𝜏𝜏 𝛿𝛿 𝑡𝑡𝑠𝑠 − 𝜏𝜏 𝑑𝑑𝑑𝑑 ⇒ 𝑤𝑤 𝑡𝑡, 𝜏𝜏 = 𝛿𝛿 𝑡𝑡𝑠𝑠 − 𝜏𝜏

Ideal sampling WF 9
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𝑤𝑤 𝑡𝑡, 𝜏𝜏 =
1
𝑁𝑁
�
𝑘𝑘=0

𝑁𝑁−1

𝛿𝛿 𝜏𝜏 − (𝑡𝑡 − 𝑘𝑘𝑘𝑘𝑠𝑠) =
1
𝑁𝑁

rect 𝑇𝑇𝑀𝑀 �
𝑘𝑘
𝛿𝛿 𝜏𝜏 − 𝑘𝑘𝑘𝑘𝑠𝑠

Weighting function – time domain 10

𝑤𝑤(𝑡𝑡, 𝜏𝜏)

𝑡𝑡𝑠𝑠

1
𝑁𝑁

𝑇𝑇𝑀𝑀

𝜏𝜏
𝑡𝑡
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WF autocorrelation 11

𝑘𝑘𝑤𝑤𝑡𝑡𝑡𝑡(𝛾𝛾)

𝑡𝑡𝑠𝑠

1
𝑁𝑁

𝑇𝑇𝑀𝑀

𝑘𝑘𝑤𝑤𝑡𝑡𝑡𝑡 𝛾𝛾 =
1
𝑁𝑁

tri 𝑇𝑇𝑀𝑀 �
𝑘𝑘
𝛿𝛿 𝛾𝛾 − 𝑘𝑘𝑘𝑘𝑠𝑠

𝑁𝑁 − 1
𝑁𝑁2

𝛾𝛾

Unity amplitude
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Output noise 12

𝑘𝑘𝑤𝑤𝑡𝑡𝑡𝑡(𝛾𝛾)

𝑡𝑡𝑠𝑠

1
𝑁𝑁

𝑛𝑛𝑦𝑦2 = �𝑅𝑅𝑥𝑥𝑥𝑥 𝛾𝛾 𝑘𝑘𝑤𝑤𝑡𝑡𝑡𝑡(𝛾𝛾)𝑑𝑑𝑑𝑑 =
𝑛𝑛𝑥𝑥2

𝑁𝑁

𝑅𝑅𝑥𝑥𝑥𝑥(𝛾𝛾)
𝛾𝛾
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𝑊𝑊 𝑡𝑡, 𝑓𝑓 =
𝑇𝑇𝑀𝑀
𝑁𝑁

sinc(𝜋𝜋𝜋𝜋𝑇𝑇𝑀𝑀) ∗
1
𝑡𝑡𝑠𝑠
�

𝑘𝑘
𝛿𝛿 𝑓𝑓 −

𝑘𝑘
𝑡𝑡𝑠𝑠

= �
𝑘𝑘

sinc 𝜋𝜋𝑇𝑇𝑀𝑀 𝑓𝑓 −
𝑘𝑘
𝑡𝑡𝑠𝑠

Weighting function – frequency domain 13

𝑊𝑊(𝑡𝑡,𝑓𝑓)

1
𝑇𝑇𝑀𝑀

11
𝑡𝑡𝑠𝑠

𝑓𝑓

(we neglect the phase
term associated to the 

rectangle not being
centered around 𝜏𝜏 = 0)
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𝑊𝑊 𝑡𝑡, 𝑓𝑓 2 =
𝑇𝑇𝑀𝑀
𝑁𝑁

sinc2(𝜋𝜋𝜋𝜋𝑇𝑇𝑀𝑀) ∗
1
𝑡𝑡𝑠𝑠
�

𝑘𝑘
𝛿𝛿 𝑓𝑓 −

𝑘𝑘
𝑡𝑡𝑠𝑠

= �
𝑘𝑘

sinc2 𝜋𝜋𝑇𝑇𝑀𝑀 𝑓𝑓 −
𝑘𝑘
𝑡𝑡𝑠𝑠

WF autocorrelation 14

𝑊𝑊 𝑡𝑡,𝑓𝑓 2

1
𝑇𝑇𝑀𝑀

11
𝑡𝑡𝑠𝑠

𝑓𝑓
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𝑛𝑛𝑦𝑦2 = �𝑆𝑆𝑥𝑥 𝑓𝑓 𝑊𝑊 𝑡𝑡, 𝑓𝑓 2𝑑𝑑𝑓𝑓 =
1
𝑇𝑇𝑀𝑀

�
𝑘𝑘
𝑆𝑆𝑥𝑥

𝑘𝑘
𝑡𝑡𝑠𝑠

=
1
𝑁𝑁
�

𝑘𝑘

1
𝑡𝑡𝑠𝑠
𝑆𝑆𝑥𝑥

𝑘𝑘
𝑡𝑡𝑠𝑠

= 𝑛𝑛𝑥𝑥2/𝑁𝑁

Output noise 15

𝑊𝑊 𝑡𝑡,𝑓𝑓 2
1

Area = 1/𝑇𝑇𝑀𝑀

𝑆𝑆𝑥𝑥(𝑓𝑓)
1
𝑡𝑡𝑠𝑠 𝑓𝑓
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We consider a noise that is correlated over a few samples, where
the 𝛿𝛿-function amplitude is about 1/𝑁𝑁:

𝑛𝑛𝑦𝑦2 = �𝑅𝑅𝑥𝑥𝑥𝑥 𝛾𝛾 𝑘𝑘𝑤𝑤𝑡𝑡𝑡𝑡(𝛾𝛾)𝑑𝑑𝑑𝑑 ≈
1
𝑁𝑁
�

𝑘𝑘
𝑅𝑅𝑥𝑥𝑥𝑥 𝑘𝑘𝑡𝑡𝑠𝑠

Correlated input noise – time domain 16

𝑘𝑘𝑤𝑤𝑡𝑡𝑡𝑡(𝛾𝛾)

𝑡𝑡𝑠𝑠

1/𝑁𝑁 𝑁𝑁 − 1 /𝑁𝑁2

𝑅𝑅𝑥𝑥𝑥𝑥(𝛾𝛾)

𝛾𝛾

𝑁𝑁 − 2 /𝑁𝑁2



Alessandro Spinelli – Electronics 96032

• In the frequency domain we get

𝑛𝑛𝑦𝑦2 =
1
𝑁𝑁
�

𝑘𝑘

1
𝑡𝑡𝑠𝑠
𝑆𝑆𝑥𝑥

𝑘𝑘
𝑡𝑡𝑠𝑠

,

considering the sinc2 functions as 𝛿𝛿-functions with respect to 𝑆𝑆𝑥𝑥
(same as saying that the correlation time is much shorter than 𝑇𝑇𝑀𝑀)

• The two expressions are equivalent via Parseval theorem

Correlated input noise – frequency domain 17
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• DT filter has unity signal gain ⇒ for GI to have the same gain, we
set 𝑇𝑇𝐺𝐺 = 𝑇𝑇𝑀𝑀 and 𝐾𝐾 = 1/𝑇𝑇𝐺𝐺

• Output noise (correlation time much shorter than 𝑇𝑇𝑀𝑀):

𝑛𝑛𝐺𝐺𝐺𝐺2 = �𝑅𝑅𝑥𝑥𝑥𝑥 𝛾𝛾 𝑘𝑘𝑤𝑤𝑡𝑡𝑡𝑡(𝛾𝛾)𝑑𝑑𝑑𝑑 ≈
1
𝑇𝑇𝑀𝑀

�𝑅𝑅𝑥𝑥𝑥𝑥 𝛾𝛾 𝑑𝑑𝑑𝑑 =
1
𝑇𝑇𝑀𝑀

𝑆𝑆𝑥𝑥(0)

Comparison against GI 18

𝜏𝜏

𝑤𝑤(𝑡𝑡, 𝜏𝜏) 𝐾𝐾2𝑇𝑇𝐺𝐺 𝑘𝑘𝑤𝑤𝑡𝑡𝑡𝑡

𝑇𝑇𝑀𝑀−𝑇𝑇𝑀𝑀

𝛾𝛾

𝑇𝑇𝑀𝑀

𝐾𝐾
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• Time domain:

𝑛𝑛𝐴𝐴𝐴𝐴2

𝑛𝑛𝐺𝐺𝐺𝐺2
=

1
𝑁𝑁∑𝑘𝑘 𝑅𝑅𝑥𝑥𝑥𝑥 𝑘𝑘𝑡𝑡𝑠𝑠
1
𝑇𝑇𝑀𝑀 ∫

𝑅𝑅𝑥𝑥𝑥𝑥 𝛾𝛾 𝑑𝑑𝑑𝑑
=
𝑡𝑡𝑠𝑠 ∑𝑘𝑘 𝑅𝑅𝑥𝑥𝑥𝑥 𝑘𝑘𝑡𝑡𝑠𝑠
∫𝑅𝑅𝑥𝑥𝑥𝑥 𝛾𝛾 𝑑𝑑𝑑𝑑

> 1

• Frequency domain:

𝑛𝑛𝐴𝐴𝐴𝐴2

𝑛𝑛𝐺𝐺𝐺𝐺2
=
∑𝑆𝑆𝑥𝑥

𝑘𝑘
𝑡𝑡𝑠𝑠

𝑆𝑆𝑥𝑥 0
> 1

Comparison against GI 19

𝛾𝛾
𝑡𝑡𝑠𝑠 2𝑡𝑡𝑠𝑠−𝑡𝑡𝑠𝑠−2𝑡𝑡𝑠𝑠
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• Uniform average
• Non-uniform average

Outline 20
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• Is used to mimic the behavior of any CT filter (or those unfeasible in 
CT)

• We consider once again constant signal and non-correlated stationary 
noise samples (𝑇𝑇𝑛𝑛 < 𝑡𝑡𝑠𝑠)

�𝑦𝑦 = �
𝑘𝑘=1

𝑁𝑁

𝑤𝑤𝑘𝑘(𝑥𝑥𝑘𝑘 + 𝑛𝑛𝑘𝑘) = �
𝑘𝑘=1

𝑁𝑁

𝑤𝑤𝑘𝑘𝑥𝑥𝑘𝑘 = 𝐴𝐴�
𝑘𝑘=1

𝑁𝑁

𝑤𝑤𝑘𝑘

𝑛𝑛𝑦𝑦2 = �
𝑘𝑘=1

𝑁𝑁

𝑤𝑤𝑘𝑘2𝑛𝑛𝑘𝑘2 = 𝑛𝑛𝑥𝑥2�
𝑘𝑘=1

𝑁𝑁

𝑤𝑤𝑘𝑘2

Non-uniform average 21
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𝑆𝑆
𝑁𝑁 𝑦𝑦

=
𝑆𝑆
𝑁𝑁 𝑥𝑥

∑𝑘𝑘=1𝑁𝑁 𝑤𝑤𝑘𝑘

∑𝑘𝑘=1𝑁𝑁 𝑤𝑤𝑘𝑘2

For constant weights, the improvement with 𝑁𝑁 is recovered

Improvement in S/N 22
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We set 𝑤𝑤𝑘𝑘 = 𝛼𝛼𝑘𝑘:

�𝑦𝑦 = 𝐴𝐴�
𝑘𝑘=0

𝑁𝑁−1

𝛼𝛼𝑘𝑘 ≈ 𝐴𝐴
1

1 − 𝛼𝛼
𝑛𝑛𝑦𝑦2 = 𝑛𝑛𝑥𝑥2 �

𝑘𝑘=0

𝑁𝑁−1

𝛼𝛼2𝑘𝑘 = 𝑛𝑛𝑥𝑥2
1

1 − 𝛼𝛼2

𝑆𝑆
𝑁𝑁 𝑦𝑦

=
𝑆𝑆
𝑁𝑁 𝑥𝑥

1 + 𝛼𝛼
1 − 𝛼𝛼

Diverging as 𝛼𝛼 → 1??

Power-law weighting 23

𝑁𝑁𝑒𝑒𝑒𝑒
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• If 𝛼𝛼𝑁𝑁 does not go to zero, the partial sum ought to be considered
and the result becomes:

𝑁𝑁𝑒𝑒𝑒𝑒 =
1 + 𝛼𝛼
1 − 𝛼𝛼

1 − 𝛼𝛼𝑁𝑁

1 + 𝛼𝛼𝑁𝑁
• 𝑁𝑁𝑒𝑒𝑒𝑒 ≤ 𝑁𝑁 and 𝑁𝑁𝑒𝑒𝑒𝑒 → 𝑁𝑁 for 𝛼𝛼 → 1 ⇒ the best filtering option in 

this case is uniform

Equivalent number of samples 24
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• The weights are

𝑤𝑤𝑘𝑘 = 𝑒𝑒−𝑘𝑘𝑡𝑡𝑠𝑠/𝑇𝑇𝐹𝐹 = 𝑒𝑒−𝑡𝑡𝑠𝑠/𝑇𝑇𝐹𝐹 𝑘𝑘 ⇒ 𝛼𝛼 = 𝑒𝑒−𝑡𝑡𝑠𝑠/𝑇𝑇𝐹𝐹

• The improvement in 𝑆𝑆/𝑁𝑁 goes with 𝑁𝑁𝑒𝑒𝑒𝑒, where

𝑁𝑁𝑒𝑒𝑒𝑒 =
1 + 𝛼𝛼
1 − 𝛼𝛼

=
1 + 𝑒𝑒−𝑡𝑡𝑠𝑠/𝑇𝑇𝐹𝐹

1 − 𝑒𝑒−𝑡𝑡𝑠𝑠/𝑇𝑇𝐹𝐹
≈

2𝑇𝑇𝐹𝐹
𝑡𝑡𝑠𝑠

• In the continuous time we had 2𝑇𝑇𝐹𝐹
𝑇𝑇𝑛𝑛

≥ 𝑁𝑁𝑒𝑒𝑒𝑒

Example: discrete-time LPF 25

𝜏𝜏
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• BA can be seen as cascade of two filters:
 Single-pulse BA with gain 1/𝑇𝑇𝐹𝐹
 Power-law average of samples with 𝛼𝛼 = 𝑒𝑒−𝑇𝑇𝐶𝐶/𝑇𝑇𝐹𝐹

BA as an averaging filter 26

𝑤𝑤(𝑡𝑡, 𝜏𝜏)

𝑇𝑇𝐶𝐶𝑇𝑇𝐶𝐶 𝑇𝑇𝑂𝑂
≈

𝑇𝑇𝐶𝐶𝑇𝑇𝑂𝑂

1
𝑇𝑇𝐹𝐹

1
𝑇𝑇𝐹𝐹
𝑒𝑒−

𝑇𝑇𝐶𝐶
𝑇𝑇𝐹𝐹1

𝑇𝑇𝐹𝐹
𝑒𝑒−

𝑇𝑇𝐶𝐶
𝑇𝑇𝐹𝐹

2

𝜏𝜏
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• We recover the BA results:

𝑁𝑁𝑒𝑒𝑒𝑒 =
1 + 𝛼𝛼
1 − 𝛼𝛼

=
1 + 𝑒𝑒−𝑇𝑇𝐶𝐶/𝑇𝑇𝐹𝐹

1 − 𝑒𝑒−𝑇𝑇𝐶𝐶/𝑇𝑇𝐹𝐹
≈

2𝑇𝑇𝐹𝐹
𝑇𝑇𝐶𝐶

• Analogously, for the ratemeter

𝛼𝛼 = 𝑒𝑒−(𝑇𝑇𝐶𝐶+𝑇𝑇𝑂𝑂)/𝑇𝑇𝐹𝐹 ⇒ 𝑁𝑁𝑒𝑒𝑒𝑒 =
2𝑇𝑇𝐹𝐹

𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑂𝑂
(both approximations valid for 𝑇𝑇𝐶𝐶 + 𝑇𝑇𝑂𝑂 ≪ 𝑇𝑇𝐹𝐹)

Equivalent number of samples 27
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