

V POLITECNICO DI MILANO

Electronics – 96032

Discrete-time Filters

Alessandro Spinelli Phone: (02 2399) 4001 alessandro.spinelli@polimi.it

spinelli.faculty.polimi.it

Slides are supplementary material and are NOT a replacement for textbooks and/or lecture notes

Purpose of the lesson

- Most modern-day filters are realized in a digital way
- We review here a discrete-time implementation of the filters already discussed:

		Noise	
		HF (White)	LF (flicker)
Signal	LF (constant)	this lesson	next lessons
	HF (pulse)	this lesson	next lessons

- Uniform average
- Non-uniform average

Working principle

- A number N of samples of the input signal and noise are acquired with sampling time t_s
- A suitable weighted average is then performed on the data to yield the output

$$y = \sum_{k=1}^{N} w_k (x_k + n_k)$$

Uniform average

• In a uniform average $w_k = 1/N$

$$y = \frac{1}{N} \sum_{k=1}^{N} (x_k + n_k)$$

• We are basically building a discrete-time equivalent of the gatedintegrator:

$$\frac{1}{N}$$

Constant signal $x_k = A$ and non-correlated stationary noise samples: i.e., $T_n < t_s$

$$\bar{y} = \overline{\frac{1}{N}\sum_{k=1}^{N} (A+n_k)} = A$$
 $\overline{n_y^2} = \frac{1}{N^2}\sum_{k=1}^{N} \overline{n_k^2} = \frac{\overline{n_x^2}}{N}$

 $\left(\frac{S}{N}\right)_{y} = \sqrt{N} \left(\frac{S}{N}\right)_{x}$ S/N improves withthe square root of the number of samples

We set $T_G = T_M = Nt_S$ (total measurement time)

$$\left(\frac{S}{N}\right)_{GI} = \left(\frac{S}{N}\right)_{X} \sqrt{\frac{T_{M}}{T_{n}}}$$
$$\left(\frac{S}{N}\right)_{AV} = \left(\frac{S}{N}\right)_{X} \sqrt{\frac{N}{N}} = \left(\frac{S}{N}\right)_{X} \sqrt{\frac{T_{M}}{t_{s}}} < \left(\frac{S}{N}\right)_{GI}$$
$$(T_{n} < t_{s})$$

Ideal sampling WF

- We want to put discrete-time filters into the developed framework
- For ideal sampling at time t_s we have

 $y(t) = x(t_s),$

which can be written as

$$y(t) = \int x(\tau)\delta(t_s - \tau)d\tau \Rightarrow w(t,\tau) = \delta(t_s - \tau)$$

Weighting function – time domain

$$w(t,\tau) = \frac{1}{N} \sum_{k=0}^{N} \delta(\tau - (t - kt_s)) = \frac{1}{N} \operatorname{rect}(T_M) \sum_k \delta(\tau - kt_s)$$

WF autocorrelation

POLITECNICO DI MILANO

12

POLITECNICO DI MILANO

Weighting function – frequency domain

$$W(t,f) = \frac{1}{t_s} \int_{-\infty}^{\infty} \frac{1}{T_M} \int_{-\infty}^{\infty$$

(we neglect the phase term associated to the rectangle not being centered around $\tau = 0$) 13

WF autocorrelation

Correlated input noise – time domain

We consider a noise that is correlated over a few samples, where the δ -function amplitude is about 1/N:

$$\overline{n_y^2} = \int R_{xx}(\gamma) k_{w_{tt}}(\gamma) d\gamma \approx \frac{1}{N} \sum_k R_{xx}(kt_s)$$

Correlated input noise – frequency domain

• In the frequency domain we get

$$\overline{n_y^2} = \frac{1}{N} \sum_k \frac{1}{t_s} S_x\left(\frac{k}{t_s}\right),$$

considering the sinc² functions as δ -functions with respect to S_{χ} (same as saying that the correlation time is much shorter than T_M)

• The two expressions are equivalent via Parseval theorem

17

Comparison against GI

- DT filter has unity signal gain \Rightarrow for GI to have the same gain, we set $T_G = T_M$ and $K = 1/T_G$
- Output noise (correlation time much shorter than T_M):

$$\overline{n_{GI}^2} = \int R_{xx}(\gamma) k_{w_{tt}}(\gamma) d\gamma \approx \frac{1}{T_M} \int R_{xx}(\gamma) d\gamma = \frac{1}{T_M} S_x(0)$$

$$K = \int_{T_M}^{w(t,\tau)} \int_{T_M}^{w(t,\tau)} \int_{T_M}^{\tau} \int_{T_M}^{w(t,\tau)} \int_{T_M}^{\tau} \int_{T_M}^{w_{tt}} \int_{T_M}^{\gamma} \int_{T_M}^{\tau} \int_{T_M}^{$$

Comparison against GI

• Time domain:

$$\frac{\overline{n_{AV}^2}}{\overline{n_{GI}^2}} = \frac{\frac{1}{N} \sum_k R_{xx}(kt_s)}{\frac{1}{T_M} \int R_{xx}(\gamma) d\gamma} = \frac{t_s \sum_k R_{xx}(kt_s)}{\int R_{xx}(\gamma) d\gamma} > 1$$

• Frequency domain:

$$\frac{\overline{n_{AV}^2}}{\overline{n_{GI}^2}} = \frac{\sum S_x\left(\frac{k}{t_s}\right)}{S_x(0)} > 1$$

- Uniform average
- Non-uniform average

Non-uniform average

- Is used to mimic the behavior of any CT filter (or those unfeasible in CT)
- We consider once again constant signal and non-correlated stationary noise samples $(T_n < t_s)$

$$\overline{y} = \overline{\sum_{k=1}^{N} w_k (x_k + n_k)} = \sum_{k=1}^{N} w_k x_k = A \sum_{k=1}^{N} w_k$$
$$\overline{n_y^2} = \sum_{k=1}^{N} w_k^2 \overline{n_k^2} = \overline{n_x^2} \sum_{k=1}^{N} w_k^2$$

Improvement in S/N

$$\left(\frac{S}{N}\right)_{y} = \left(\frac{S}{N}\right)_{x} \frac{\sum_{k=1}^{N} w_{k}}{\sqrt{\sum_{k=1}^{N} w_{k}^{2}}}$$

For constant weights, the improvement with \sqrt{N} is recovered

Power-law weighting

We set $w_k = \alpha^{\kappa}$: N-1 $\bar{y} = A \sum \alpha^k \approx A \frac{1}{1 - \alpha} \qquad \qquad \overline{n_y^2} = \overline{n_x^2} \sum \alpha^{2k} = \overline{n_x^2} \frac{1}{1 - \alpha^2}$ $\left(\frac{S}{N}\right)_{v} = \left(\frac{S}{N}\right)_{x} \sqrt{\frac{1+\alpha}{1-\alpha}}$ Diverging as $\alpha \rightarrow 1$??

Equivalent number of samples

• If α^N does not go to zero, the partial sum ought to be considered and the result becomes:

$$N_{eq} = \frac{1+\alpha}{1-\alpha} \frac{1-\alpha^N}{1+\alpha^N}$$

• $N_{eq} \leq N$ and $N_{eq} \rightarrow N$ for $\alpha \rightarrow 1 \Rightarrow$ the best filtering option in this case is uniform

Example: discrete-time LPF

• The weights are

$$w_k = e^{-kt_s/T_F} = \left(e^{-t_s/T_F}\right)^k \Rightarrow \alpha = e^{-t_s/T_F}$$

• The improvement in S/N goes with $\sqrt{N_{eq}}$, where

$$N_{eq} = \frac{1+\alpha}{1-\alpha} = \frac{1+e^{-t_s/T_F}}{1-e^{-t_s/T_F}} \approx \frac{2T_F}{t_s}$$

• In the continuous time we had $\frac{2T_F}{T_n} \ge N_{eq}$

BA as an averaging filter

- BA can be seen as cascade of two filters:
 - Single-pulse BA with gain $1/T_F$
 - Power-law average of samples with $\alpha = e^{-T_C/T_F}$

Equivalent number of samples

• We recover the BA results:

$$N_{eq} = \frac{1+\alpha}{1-\alpha} = \frac{1+e^{-T_C/T_F}}{1-e^{-T_C/T_F}} \approx \frac{2T_F}{T_C}$$

• Analogously, for the ratemeter

$$\alpha = e^{-(T_C + T_O)/T_F} \Rightarrow N_{eq} = \frac{2T_F}{T_C + T_O}$$
(both approximations valid for $T_C + T_O \ll T_F$)