

V POLITECNICO DI MILANO

Electronics – 96032

Lock-in Amplifiers

Alessandro Spinelli Phone: (02 2399) 4001 alessandro.spinelli@polimi.it

spinelli.faculty.polimi.it

Slides are supplementary material and are NOT a replacement for textbooks and/or lecture notes

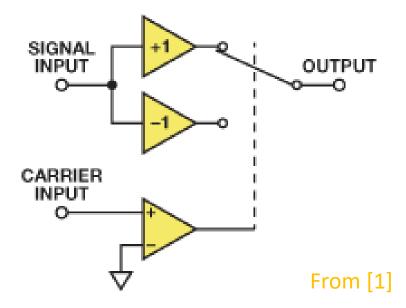
Purpose of the lesson

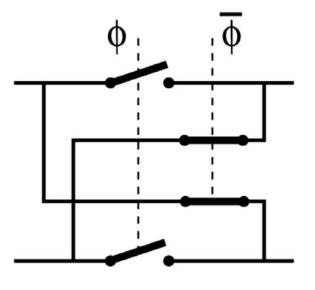
- To discuss how real signal recovery systems based on amplitude modulation are designed
- To highlight a few parameters and performance

- LIAs are powerful tools that make use of a PSD to recover weak modulated signals buried in noise
- Several modifications are made to the basic scheme in order to reach high performance

Switching demodulators

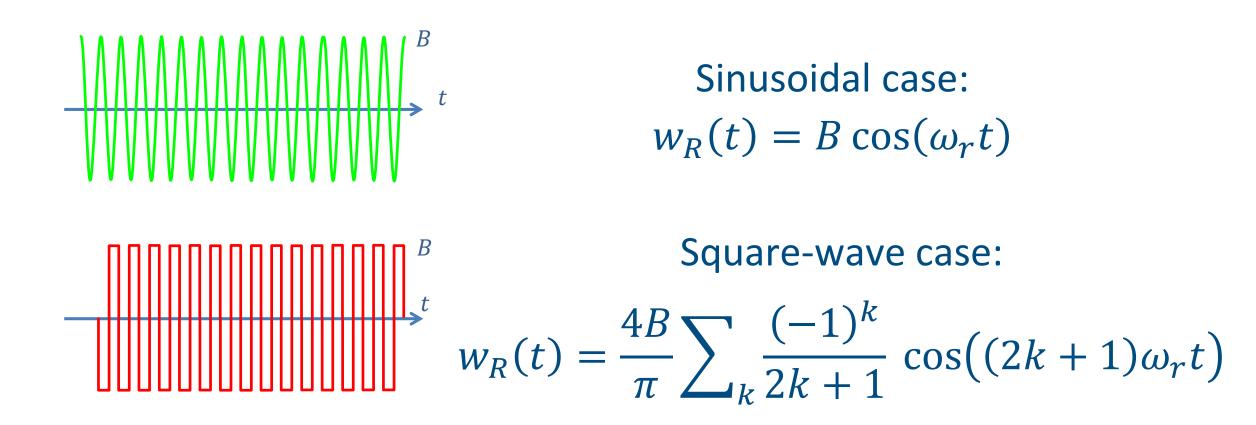
- Analog multipliers are expensive and prone to nonlinearity errors
- Modulators/mixers are rather used, where the signal is multiplied by the sign of the carrier (i.e., by a square wave at f_r)





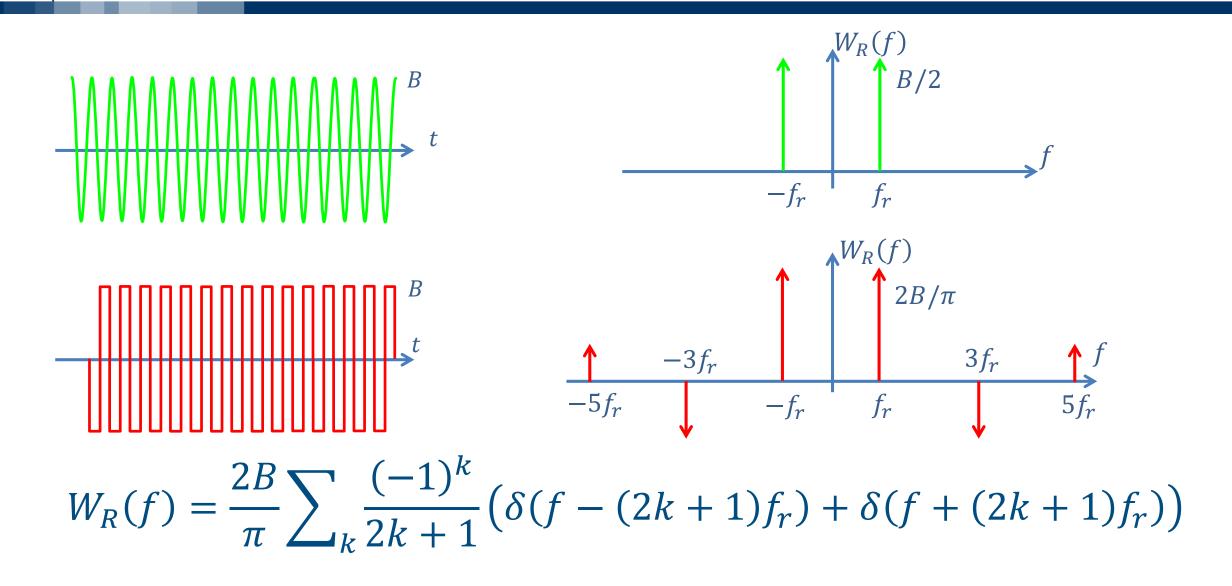
- Any noise or amplitude variation on the reference can be ignored
- The noise is mainly due to the switches and is usually lower than in multipliers
- Easier to design and manufacture

Reference functions – time domain



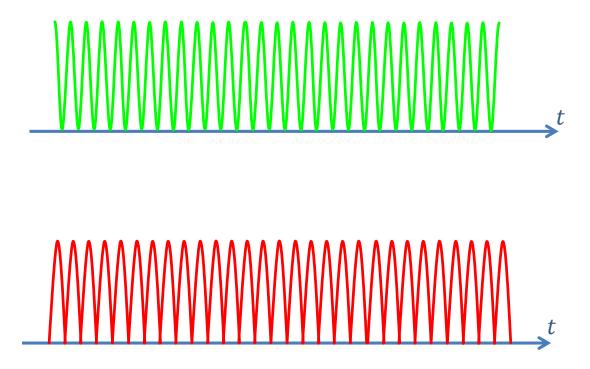
7

Reference functions – frequency domain



8

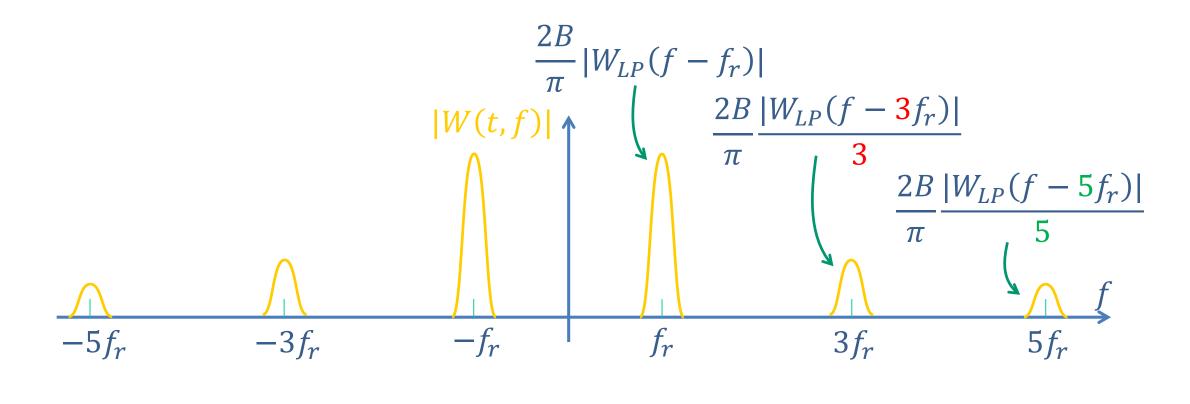
Mixer output signals



Sinusoidal demodulation $d(t) = AB \cos^2(\omega_r t)$

Square-wave demodulation $d(t) = AB | \cos(\omega_r t) |$

Switching PSD spectral response



$$W(t,f) = W_R(f) * W_{LP}(f)$$

Time correlation of reference signal

$$w_{R}(t) = \sum_{k} 2B_{k}\cos(k\omega_{r}t) \Leftrightarrow$$

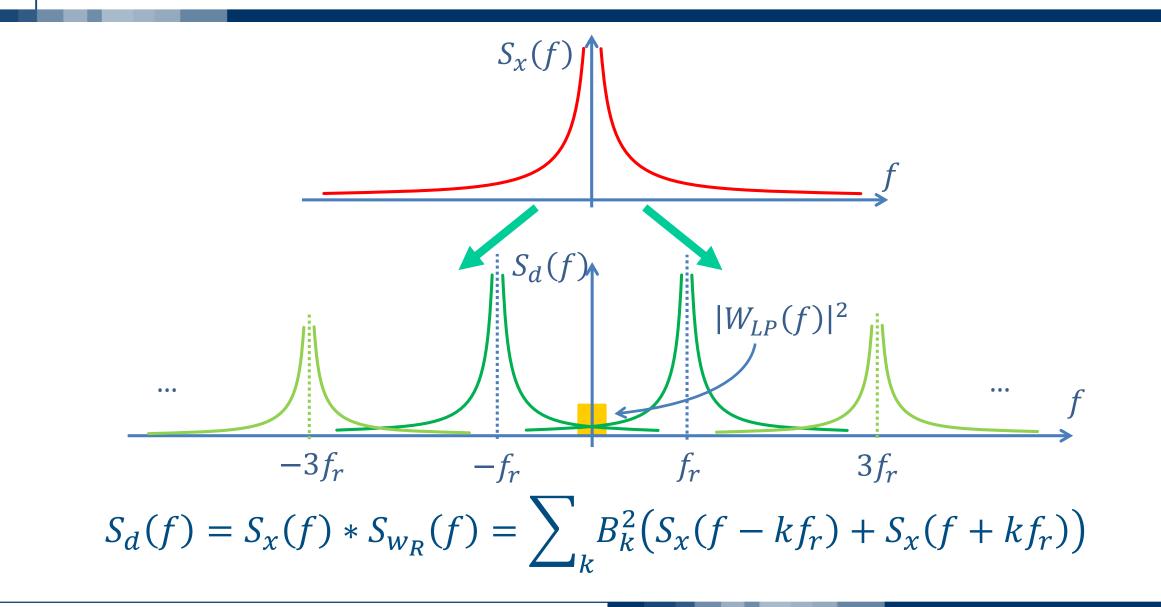
$$W_{R}(f) = \sum_{k} B_{k} \left(\delta(f - kf_{r}) + \delta(f + kf_{r})\right)$$

$$K_{w_{R}w_{R}}(\tau) = \sum_{k} 2B_{k}^{2}\cos(k\omega_{r}\tau) \Leftrightarrow$$

$$S_{w_{R}}(f) = \sum_{k} B_{k}^{2} \left(\delta(f - kf_{r}) + \delta(f + kf_{r})\right)$$

 B_k = amplitude of delta functions (Fourier coefficients)

Ex: input LF noise

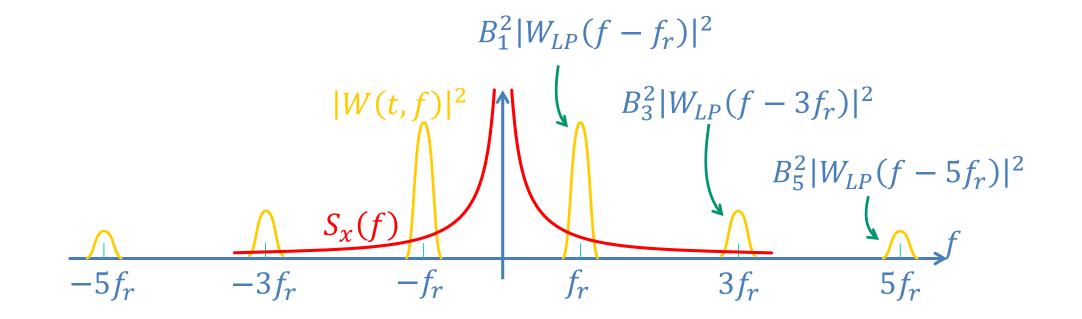


The output filter collects noise from all replicas:

$$\overline{n_y^2} = \int S_d(f) |W_{LP}(t,f)|^2 df \approx S_d(0) 2BW_n$$
$$= 2BW_n \sum_k B_k^2 \left(S_x(-kf_r) + S_x(kf_r) \right) = 4BW_n \sum_k B_k^2 S_x(kf_r)$$

$$= 4BW_n B_1^2 S_x(f_r) \sum_{k} \frac{B_k^2}{B_1^2} \frac{S_x(kf_r)}{S_x(f_r)}$$

Extra noise collected by the harmonics



The output noise is controlled by the spectral response of the PSD

S/*N* ratio (square wave)

- We consider a constant (sin-modulated) signal $x(t) = A\cos(\omega_r t)$
- Output signal and noise are

$$y(t) = A \frac{2B}{\pi} \qquad \overline{n_y^2} = 4BW_n \left(\frac{2B}{\pi}\right)^2 \sum_k \frac{S_x((2k+1)f_r)}{(2k+1)^2}$$
$$\frac{S}{N} = \frac{A}{\sqrt{4BW_n \sum_k \frac{S_x((2k+1)f_r)}{(2k+1)^2}}} = \frac{A}{\sqrt{4BW_n S_x(f_r) \sum_k \frac{S_x((2k+1)f_r)}{S_x(f_r)(2k+1)^2}}}$$

• If we are modulating beyond the noise corner frequency, $S_x((2k+1)f_r)$ is white (constant) and

$$\sum_{k} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8} \approx 1.2337$$
$$\left(\frac{S}{N}\right)_{\text{sqd}} = \frac{1}{\sqrt{1.2337}} \left(\frac{S}{N}\right)_{\text{sin}} = \frac{1}{1.11} \left(\frac{S}{N}\right)_{\text{sin}}$$

• *S*/*N* is (slightly) degraded because of the extra noise collected at the higher harmonics, where there is no signal

• If instead there is a pure 1/f input noise spectrum, we have $S_{\chi}((2k+1)f_{\gamma}) = \frac{Const}{(2k+1)f_{\gamma}}$ and the extra noise becomes $\sum_{k} \frac{1}{(2k+1)^3} \approx 1.0518$ $\left(\frac{S}{N}\right)_{\text{cod}} = \frac{1}{\sqrt{1.0518}} \left(\frac{S}{N}\right)_{\text{sin}} = \frac{1}{1.0256} \left(\frac{S}{N}\right)_{\text{sin}}$

• If the signal is also modulated by a square wave (full-square demodulation), we get (white noise case)

$$y(t) = AB = \frac{\pi}{2} (y(t))_{\sin} \qquad \overline{n_y^2} = \frac{\pi^2}{8} (\overline{n_y^2})_{\sin}$$
$$\left(\frac{S}{N}\right)_{fsq} = \frac{\pi}{2} \frac{\sqrt{8}}{\pi} \left(\frac{S}{N}\right)_{sin} \approx 1.41 \left(\frac{S}{N}\right)_{sin}$$

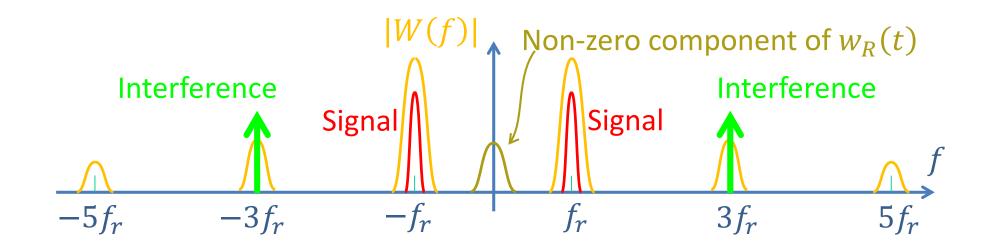
• Note that in the sinusoidal case, the signal is the first harmonic of the square wave

For square-wave signal and sinusoidal demodulation we would get

$$y(t) = \frac{4}{\pi} \frac{AB}{2} = \frac{4}{\pi} \left(y(t) \right)_{\sin} \qquad \overline{n_y^2} = \left(\overline{n_y^2} \right)_{\sin}$$
$$\left(\frac{S}{N} \right)_{\operatorname{sqs}} = \frac{4}{\pi} \left(\frac{S}{N} \right)_{\sin} \approx 1.27 \left(\frac{S}{N} \right)_{\sin}$$

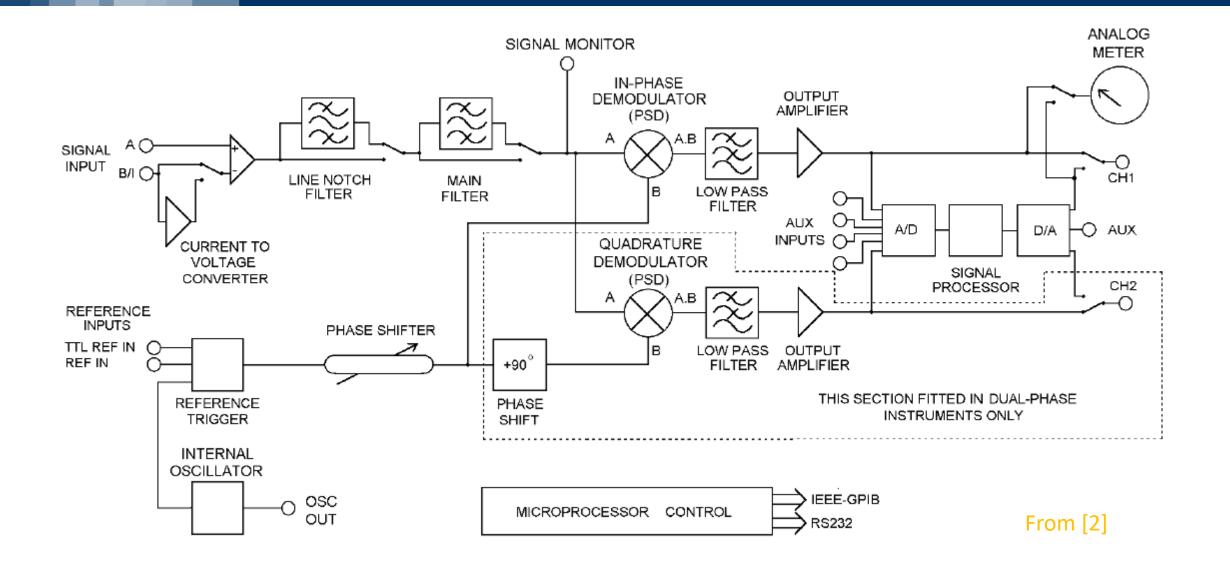
• Note that the sinusoidal demodulation only detects the first harmonic of the square wave, with amplitude $4A/\pi$

Switching PSD issues



- If $\langle w_R(t) \rangle \neq 0$ the lock-in will collect low-frequency noise, wasting all efforts (also true for sinusoidal modulation)
- The output is sensitive to localized interferences at the harmonics of $f_r \Rightarrow \text{keep } f_r$ away from multiples of 50 (or 60) Hz

Actual structure



21

Signal channel components

- Notch filter: removes 50/60 Hz and/or 2nd harmonics from signal (check Q value)
- Main filter: either LP, BP or notch
 - BP is usually employed (cleans up the signal improving dynamic reserve – see later)
 - LP can be used for low f_r
 - Flat response (no filter) can be selected for non-demanding applications
 - Always check the roll-off of the filter

Ref. channel components and PSD

- Reference trigger: generates a trigger signal (e.g. sqw) synchronous with the reference (or at $2f_r$)
- Phase shifter: adjusts the phase of the reference to track the signal
- PSD: usually a square-wave mixer. More refined implementations (e.g. suppressing 3rd harmonic response) may be employed
- Two channels working in quadrature are always employed

Output stage components

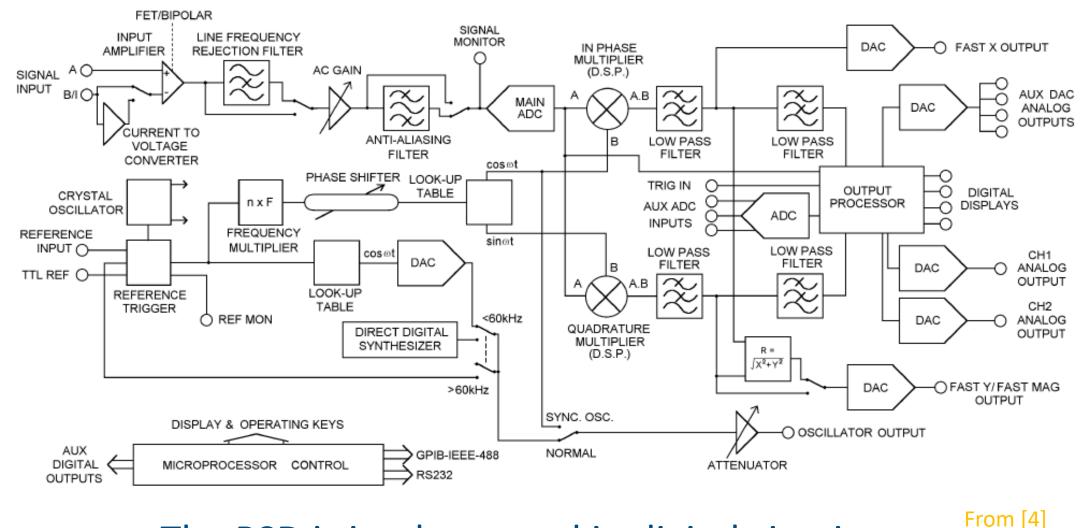
- Low-pass filter: either first- or second-order filters, usually specified via the time constant
 - 1st order may be not good enough in rejecting aliases
 - 2nd order may give problems if LIA is used within a feedback loop
- Output amplifier: provides gain increasing the sensitivity. Since it is DC-coupled, its drift and noise must be controlled

- Frequency range: typically from a fraction of Hz to a few MHz (200 MHz for RF LIAs)
- Output time constants: ms to thousands of s
- Dynamic reserve: is the ratio of the largest "tolerable" noise signal to the full scale signal, expressed in dB. Typical values are $\leq 60 \text{ dB}$

More on the dynamic reserve

- "tolerable" noise refers to a specified precision in the measurement of the signal
- DR depends on the frequency of the noise. The quoted value is the maximum value, achievable when noise is away from f_r
- DR is eventually limited by PSD non-linearity and overload
- More information in [3]

Digital/DSP LIAs



The PSD is implemented in digital circuitry

Alessandro Spinelli – Electronics 96032

POLITECNICO DI MILANO

- Reference signals are pre-computed with high precision ⇒ better PSD performance (offset, harmonics,...). DR of 100 dB can be achieved
- Much lower f_r (mHz) are allowed
- More flexibility in the (digital) LPF design (higher orders, longer time constants,...)
- No output amplifier ⇒ better stability

What is left for analog LIAs?

- Demodulation at high frequencies (MHz), since f_r is limited to a few MHz for digital LIAs
- Applications requiring short time constants at mid-range frequencies ($\approx 100 \text{ kHz}$)
- Feedback loops employing LIAs

• More discussion on analog and digital LIAs in [5]

A comparison chart

Make/Model	Features	Price Range	Remarks
SRS Model SR830	 1 mHz to 102.4 kHz frequency range 256 kHz front-end sampling rate > 100 dB dynamic reserve (5 ppm/C stability) Auto gain, phase, reverse, and offset 0.01 deg phase resolution Time constant from 10us to 30 ks GPIB, and RS-232 interfaces 	~ \$5,200	DSP Lock-in Amplifier with 41/2- digit LED display. Power 40 W 100/120/220/240 V AC, 50/60Hz
SRS Model SR850	 1 mHz to 102.4 kHz frequency range CRT display, and built-in data analysis 64,000 point data buffer Chart recording, numeric display, polar plots Smoothing, curve fitting, and statistics Direct printing, and plotting 0.001 deg phase resolution >100 dB dynamic reserve GPIB, and RS-232 interfaces 	~ \$8,700	DSP Lock-in Amplifier. Power 60W 100/120/220/240 V AC, 50/60Hz
SRS Model SR844	25 kHz to 200 MHz frequency range 80 dB dynamic reserve (5 ppm stability) Auto gain, phase, reverse, and offset Internal or external reference Time constant from 100us to 30 ks No Time Constant mode GPIB, and RS-232 interfaces	~ \$9,200	RF Lock-in Amplifier For high frequency applications.
Perkin Elmer/ EG&G Model 7265	0.001 Hz to 250 kHz frequency range Voltage and current mode inputs 10 us to 100 ks output time constants Quartz crystal stabilized internal oscillator Harmonic measurements to 65,536F Dual reference, Dual harmonic, and Virtual Reference modes Spectral display modes	~\$5,300	Duat Phase DSP Lick-in Amplifier
Perkin Elmer/ EG&G Model 7280	0.5 Hz to 2 MHz frequency range Voltage and current mode inputs 7.5 MHz main ADC sampting rate 1 us to 100 ks output time constants Quartz crystal stabilized internal oscillator Harmonic measurements to 32F Dual reference, Dual harmonic, and Virtual Reference modes Spectral display mode	-\$12,500	Dual Phase wide bandwidth DSP Lock-in Amplifier. Power 200 VA max 100/120/220/240 VAC, 50/60Hz

From [6]

POLITECNICO DI MILANO

30

- http://www.analog.com/library/analogdialogue/archives/47-06/multipliers_modulators.html
- 2. http://cpm.uncc.edu/sites/cpm.uncc.edu/files/media/tn1002.pdf
- 3. http://www.thinksrs.com/downloads/PDFs/ApplicationNotes/AboutLIAs.pdf
- 4. http://mrflip.com/papers/LIA/LIAProgram/Support/References/AmetekSR-TechNote1003.pdf
- 5. http://home.deib.polimi.it/cova/elet/lezioni/SSN08d_Filters-BPF4.pdf
- 6. http://www.vinkarola.com/pdf/Lock-InAmplifiersComparison.pdf