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• We begin our study with the analysis and design of simple
amplifiers

• Next lessons will deal with
 Basic amplifier principles and the feedback amplifier concept
 Linear applications of OpAmps
 Feedback amplifier properties
 Stability of feedback amplifiers (this lesson)
 Instrumentation amplifiers and OpAmp parameters

Purpose of the lesson 4
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• Frequency response of feedback amplifiers
• Stability of feedback amplifiers
• Compensation
• Appendix

Outline 5
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• Open-loop gain can usually be expressed as

𝐴𝐴 𝑠𝑠 =
𝐴𝐴0

1 + 𝑠𝑠𝜏𝜏
• 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is the unity-gain frequency

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =
𝐴𝐴0

2𝜋𝜋𝜋𝜋

OA parameter: gain-bandwidth product 6

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺



Alessandro Spinelli – Electronics 96032

Actual values from datasheets 7
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Actual values from datasheets 8

Dependent on 𝑉𝑉𝑐𝑐𝑐𝑐, 𝑅𝑅𝐿𝐿, 𝑇𝑇,…
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𝐺𝐺 =
𝐺𝐺𝑂𝑂𝑂𝑂(𝑠𝑠)

1 − 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠)
=

𝐺𝐺𝑖𝑖𝑖𝑖(𝑠𝑠)
1 − 1/𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠)

≈
𝐺𝐺𝑖𝑖𝑑𝑑 ∀ |𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙| ≫ 1
𝐺𝐺𝑂𝑂𝑂𝑂 ∀ |𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙| ≪ 1

where

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠 = −
𝐺𝐺𝑂𝑂𝑂𝑂 𝑠𝑠
𝐺𝐺𝑖𝑖𝑖𝑖 𝑠𝑠

⇒ 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝐺𝐺𝑂𝑂𝑂𝑂 𝑠𝑠 𝑑𝑑𝑑𝑑 − 𝐺𝐺𝑖𝑖𝑖𝑖 𝑠𝑠 𝑑𝑑𝑑𝑑

Frequency response 9
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Bode plot 10

𝐺𝐺𝑂𝑂𝑂𝑂(𝑠𝑠)

𝐺𝐺(𝑠𝑠)

𝐺𝐺𝑖𝑖𝑖𝑖(𝑠𝑠)

� 𝑑𝑑𝑑𝑑

log 𝑓𝑓

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠)

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠)
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Example: single-pole amplifier 11

𝐴𝐴0
2𝜋𝜋𝜋𝜋

= 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑓𝑓𝑇𝑇 =
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝐺𝐺𝑖𝑖𝑖𝑖

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠)

𝐺𝐺𝑂𝑂𝑂𝑂 𝑠𝑠 = 𝐴𝐴(𝑠𝑠)

𝐺𝐺(𝑠𝑠)
𝐺𝐺𝑖𝑖𝑖𝑖(𝑠𝑠)

� 𝑑𝑑𝑑𝑑

log 𝑓𝑓
𝑅𝑅1

𝑅𝑅2
‒

+
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𝐺𝐺 =
𝐺𝐺𝑖𝑖𝑖𝑖

1 − 1
𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠)

=
𝐺𝐺𝑖𝑖𝑖𝑖

1 + 𝑅𝑅1 + 𝑅𝑅2
𝐴𝐴 𝑠𝑠 𝑅𝑅1

The pole position is
(𝑅𝑅1 + 𝑅𝑅2)(1 + 𝑠𝑠𝑠𝑠)

𝐴𝐴0𝑅𝑅1
= −1

𝑠𝑠 = −
1
𝜏𝜏

1 +
𝐴𝐴0𝑅𝑅1
𝑅𝑅1 + 𝑅𝑅2

= −
1
𝜏𝜏

1 − 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 0 ⇒ 𝑓𝑓𝑝𝑝 ≈
𝐴𝐴0
2𝜋𝜋𝜋𝜋

𝑅𝑅1
𝑅𝑅1 + 𝑅𝑅2

Analytical solution 12

Open-loop
pole
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• For a non-inverting amplifier we have

𝑓𝑓𝑝𝑝 ≈
𝐴𝐴0
2𝜋𝜋𝜋𝜋

1
𝐺𝐺𝑖𝑖𝑖𝑖

⇒ 𝑓𝑓𝑝𝑝𝐺𝐺𝑖𝑖𝑖𝑖 =
𝐴𝐴0
2𝜋𝜋𝜋𝜋

= 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺

• In an inverting configuration we should write
𝑓𝑓𝑝𝑝 𝑅𝑅1 + 𝑅𝑅2 /𝑅𝑅1 = 𝑓𝑓𝑝𝑝 1 + |𝐺𝐺𝑖𝑖𝑖𝑖| = 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺,

which becomes the same for high gains
• The feedback loop reduces the (open-loop) gain by 1 − 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(0)

and widens the bandwidth by the same factor

Gain-bandwidth product 13
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• Frequency response of feedback amplifiers
• Stability of feedback amplifiers
• Compensation
• Appendix

Outline 14
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• Stability only depends on 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
• The critical condition is 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1, i.e., −𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −1

Stability of feedback systems 15

𝐺𝐺𝑂𝑂𝑂𝑂

𝐹𝐹

+
-𝑆𝑆𝑖𝑖𝑖𝑖 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜

𝐹𝐹𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜

𝜀𝜀
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• If
 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠) only has poles in LHP (or in 𝑠𝑠 = 0)

 There is only one critical frequency 𝑓𝑓0𝑑𝑑𝑑𝑑 where the magnitude of −𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
is 0 dB

 ∡ −𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓0𝑑𝑑𝑑𝑑 > −180°

• Then, the system is stable

Bode stability criterion (1945) 16
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Phase margin

• In real systems, the phase can change 
because of tolerances and parameter
drift

• The phase margin represents how
much increase in phase lag the system 
can withstand before becoming
unstable

𝜑𝜑𝑚𝑚 = 180 + ∡ −𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓0𝑑𝑑𝑑𝑑

𝑓𝑓0𝑑𝑑𝑑𝑑
log 𝑓𝑓

log 𝑓𝑓

−180°

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

∡ −𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝜑𝜑𝑚𝑚

17
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• If
 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠) only has poles in LHP (or in 𝑠𝑠 = 0)

 There is only one frequency 𝑓𝑓180 where the phase of −𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is −180° (±
multiples of 360°)

 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓180 < 1

• Then, the system is stable

An alternative definition 18
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Gain margin

• In real systems, the gain changes 
because of tolerances and drift

• The gain margin represents how much
increase in gain the system can 
withstand before becoming unstable

�𝐺𝐺𝑚𝑚
𝑑𝑑𝑑𝑑

= − 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓180 𝑑𝑑𝑑𝑑
⇒

𝐺𝐺𝑚𝑚 =
1

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑓𝑓180

log 𝑓𝑓

−180°

𝑓𝑓180

log 𝑓𝑓

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

∡ −𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝐺𝐺𝑚𝑚

19
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If poles and zeros of 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 are in LHP, stability can be inferred from 
Bode plot:

Simplified Bode criterion 20

𝜑𝜑𝑚𝑚 ≈ 45°
log 𝑓𝑓

-2
𝜑𝜑𝑚𝑚 ≈ 0°

log 𝑓𝑓
-1

𝜑𝜑𝑚𝑚 ≈ 90°

log 𝑓𝑓
𝜑𝜑𝑚𝑚 ≈ 45°

log 𝑓𝑓

-2

-2

-1

-1

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑
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How much phase margin? 21
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• Frequency response of feedback amplifiers
• Stability of feedback amplifiers
• Compensation
• Appendix

Outline 22
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• Is the tailoring of 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑠𝑠) in order to improve the circuit stability
• Most OAs are «internally compensated» to ease their use with 

resistive feedback, and have a single pole above 0dB
• For frequency-dependent feedback, stability must be checked and 

compensation applied (if needed)

Frequency compensation of OpAmps 23
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Dominant pole compensation 24

×

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠
𝑑𝑑𝑑𝑑

log 𝑓𝑓

• Used in OA internal
compensation

• Put (usually) a large 
capacitor at the output of 
the OA

• Big reduction of bandwidth
⇒ use only if no other 

option is available
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Gain compensation

• Reduces 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 until sufficient
phase margin is achieved

• Useful in uncompensated
versions of OAs

• Bandwidth and static precision
are reduced ⇒ this solution
should also be avoided

25

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠
𝑑𝑑𝑑𝑑

log 𝑓𝑓
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Example: un(or de)compensated OAs

• As 
𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

= 𝐺𝐺𝑂𝑂𝑂𝑂 𝑑𝑑𝑑𝑑 − 𝐺𝐺𝑖𝑖𝑖𝑖 𝑑𝑑𝑑𝑑,

reduction of |𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙| can be 
obtained by increasing |𝐺𝐺𝑖𝑖𝑖𝑖|

• Circuit becomes more stable as
gain is increased

26

𝐺𝐺𝑂𝑂𝑂𝑂 𝑠𝑠

𝐺𝐺(𝑠𝑠) 𝐺𝐺𝑖𝑖𝑖𝑖(𝑠𝑠)

� 𝑑𝑑𝑑𝑑

log 𝑓𝑓

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠

See [1] for details
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Lead compensation (𝒇𝒇𝒛𝒛 < 𝒇𝒇𝒑𝒑) 27

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝐴𝐴 𝑠𝑠
𝑅𝑅1

𝑅𝑅1 + 𝑅𝑅2
1 + 𝑠𝑠𝐶𝐶𝑐𝑐𝑅𝑅2

1 + 𝑠𝑠𝐶𝐶𝑐𝑐(𝑅𝑅1ǁ 𝑅𝑅2)

‒

+

𝑅𝑅1
𝑅𝑅2

𝐶𝐶𝑐𝑐

1
2𝜋𝜋𝜏𝜏1

1
2𝜋𝜋𝜏𝜏2

𝐴𝐴 𝑠𝑠 𝑑𝑑𝑑𝑑

log 𝑓𝑓
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Resulting loop gain

• The zero can be placed
anywhere between the second
pole of the OA and 𝑓𝑓0𝑑𝑑𝑑𝑑

• The ideal gain is also modified

𝐺𝐺𝑖𝑖𝑖𝑖𝐼𝐼 = −
𝑅𝑅2
𝑅𝑅1

1
1 + 𝑠𝑠𝐶𝐶𝑐𝑐𝑅𝑅2

𝐺𝐺𝑖𝑖𝑖𝑖𝑁𝑁𝐼𝐼 =
𝑅𝑅1 + 𝑅𝑅2
𝑅𝑅1

1 + 𝑠𝑠𝐶𝐶𝑐𝑐 𝑅𝑅1ǁ 𝑅𝑅2
1 + 𝑠𝑠𝐶𝐶𝑐𝑐𝑅𝑅2

28

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑑𝑑𝑑𝑑

log 𝑓𝑓

1
2𝜋𝜋𝜏𝜏1

1
2𝜋𝜋𝜏𝜏2

uncompensated

compensated with
𝑓𝑓𝑧𝑧 = 𝑓𝑓0𝑑𝑑𝑑𝑑

compensated with
𝑓𝑓𝑧𝑧 = 𝑓𝑓𝑝𝑝𝑝
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• The closed-loop gain contains a pole at 𝑓𝑓𝑧𝑧 ⇒ there is a trade-off 
between phase margin and bandwidth

• If 𝑓𝑓𝑧𝑧 is lowered too much to increase the phase margin (e.g, 𝑓𝑓𝑧𝑧 ≤
𝑓𝑓𝑝𝑝𝑝), high-frequency poles of 𝐴𝐴(𝑠𝑠) must also be considered ⇒
increasing 𝑓𝑓0𝑑𝑑𝑑𝑑 beyond 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 is not a good idea!

Comments 29
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𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝐴𝐴 𝑠𝑠
𝑅𝑅1 ∥ 𝑍𝑍𝐶𝐶

𝑅𝑅1 ∥ 𝑍𝑍𝐶𝐶 + 𝑅𝑅2
= −𝐴𝐴 𝑠𝑠

𝑅𝑅1
𝑅𝑅1 + 𝑅𝑅2

1
1 + 𝑠𝑠𝐶𝐶𝑖𝑖(𝑅𝑅1ǁ 𝑅𝑅2)

Example: input capacitance 30

1
2𝜋𝜋𝜋𝜋

1
2𝜋𝜋𝐶𝐶𝑖𝑖 𝑅𝑅1ǁ 𝑅𝑅2

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠
𝑑𝑑𝑑𝑑

log 𝑓𝑓

‒

+

𝑅𝑅1
𝑅𝑅2

𝐶𝐶𝑖𝑖

single-pole
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Compensation of input capacitance 31

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝐴𝐴 𝑠𝑠
𝑅𝑅1

𝑅𝑅1 + 𝑅𝑅2
1 + 𝑠𝑠𝐶𝐶𝑐𝑐𝑅𝑅2

1 + 𝑠𝑠(𝐶𝐶𝑖𝑖+𝐶𝐶𝑐𝑐)(𝑅𝑅1ǁ 𝑅𝑅2)

‒

+

𝑅𝑅1
𝑅𝑅2

𝐶𝐶𝑖𝑖

𝐶𝐶𝑐𝑐



Alessandro Spinelli – Electronics 96032

Resulting loop gain

𝑓𝑓𝑝𝑝 =
1

2𝜋𝜋(𝐶𝐶𝑖𝑖+𝐶𝐶𝑐𝑐) 𝑅𝑅1ǁ 𝑅𝑅2

𝑓𝑓𝑧𝑧 =
1

2𝜋𝜋𝐶𝐶𝑐𝑐𝑅𝑅2
• Small 𝐶𝐶𝑐𝑐: 𝑓𝑓𝑧𝑧 > 𝑓𝑓𝑝𝑝
• Large 𝐶𝐶𝑐𝑐: 𝑓𝑓𝑧𝑧 < 𝑓𝑓𝑝𝑝

32

1
2𝜋𝜋𝜋𝜋

𝑓𝑓𝑝𝑝 𝑓𝑓𝑧𝑧 𝑓𝑓𝑝𝑝 < 𝑓𝑓𝑧𝑧

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑠𝑠
𝑑𝑑𝑑𝑑

log 𝑓𝑓
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• 𝐶𝐶𝑐𝑐 modifies the closed-loop gain ⇒ stability is traded off against
bandwidth (now given by 𝑓𝑓𝑧𝑧)

• Another possibility is 𝐶𝐶𝑐𝑐𝑅𝑅2 = 𝐶𝐶𝑖𝑖𝑅𝑅1 (pole-zero cancellation), but
keep in mind that 𝐶𝐶𝑖𝑖 is never constant in reality…

• In differential amplifiers, use symmetric compensation

Comments 33
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𝑍𝑍 does not affect 𝐺𝐺𝑖𝑖𝑖𝑖, but can degrade 𝑍𝑍𝑖𝑖𝑖𝑖 in NI amplifiers

Lag network (𝒇𝒇𝒑𝒑 < 𝒇𝒇𝒛𝒛) 34

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝐴𝐴 𝑠𝑠
𝑅𝑅1

𝑅𝑅1 + 𝑅𝑅2
1 + 𝑠𝑠𝐶𝐶𝑐𝑐𝑅𝑅𝑐𝑐

1 + 𝑠𝑠𝐶𝐶𝑐𝑐(𝑅𝑅𝑐𝑐 + 𝑅𝑅1ǁ 𝑅𝑅2)

𝑅𝑅𝑐𝑐

𝐶𝐶𝑐𝑐

‒

+

𝑅𝑅1
𝑅𝑅2

𝑍𝑍
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A small resistor 𝑅𝑅𝑐𝑐 between the OA inputs can reduce 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙
and provide compensation. However, reducing 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is usually
not a good solution…

Example: differentiator 35

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝐴𝐴 𝑠𝑠
1

1 + 𝑠𝑠𝑠𝑠(𝐶𝐶 + 𝐶𝐶𝑖𝑖)

‒

+

𝑅𝑅

𝐶𝐶𝑖𝑖

𝐶𝐶
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Alternative compensation scheme 36

‒

+

𝑅𝑅

𝐶𝐶𝑖𝑖

𝐶𝐶𝑅𝑅𝑐𝑐

𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −𝐴𝐴 𝑠𝑠
1 + 𝑠𝑠𝑠𝑠𝑅𝑅𝑐𝑐

1 + 𝑠𝑠 𝐶𝐶𝑅𝑅𝑐𝑐 + 𝐶𝐶𝐶𝐶 + 𝐶𝐶𝑖𝑖𝑅𝑅 + 𝑠𝑠2𝐶𝐶𝐶𝐶𝑖𝑖𝑅𝑅𝑅𝑅𝑐𝑐
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• For frequencies much smaller than its pole/zero, a capacitor can 
be regarded as an open circuit

• For frequencies much larger than its pole/zero, a capacitor can be 
regarded as a short-circuit

• Pole/zero frequencies are inversely proportional to the 
capacitance value
 𝐶𝐶 will give LF pole/zero ⇒ 𝐶𝐶𝑖𝑖 behaves as an open circuit
 𝐶𝐶𝑖𝑖 will give HF pole/zero ⇒ 𝐶𝐶 behaves as a short-circuit

LH/HF approximation 37
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Resulting schemes 38

LF HF

‒

+

𝑅𝑅
𝐶𝐶𝑅𝑅𝐶𝐶 ‒

+

𝑅𝑅

𝐶𝐶𝑖𝑖

𝑅𝑅𝐶𝐶
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• 𝑓𝑓𝑝𝑝𝑝 is usually at high frequency and can be neglected

• Lag network (𝑓𝑓𝑝𝑝1 < 𝑓𝑓𝑧𝑧) can be used for compensation

• Closed-loop gain bandwidth limited to 1
2𝜋𝜋𝑅𝑅𝑐𝑐𝐶𝐶

Poles and zeros 39

LF: 𝑓𝑓𝑧𝑧 =
1

2𝜋𝜋𝜋𝜋𝑅𝑅𝑐𝑐
𝑓𝑓𝑝𝑝𝑝 ≈

1
2𝜋𝜋𝜋𝜋 𝑅𝑅𝑐𝑐 + 𝑅𝑅

HF: 𝑓𝑓𝑝𝑝𝑝 ≈
1

2𝜋𝜋𝐶𝐶𝑖𝑖 𝑅𝑅𝑐𝑐ǁ𝑅𝑅
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Additional pole in 𝐺𝐺𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 must be above 𝐺𝐺𝐵𝐵𝐵𝐵𝐵𝐵 (say, 10 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺) ⇒
rough (and conservative) estimate of maximum load capacitance is

Capacitive load 40

𝐶𝐶𝐿𝐿
‒

+

𝑅𝑅1
𝑅𝑅2
𝑅𝑅𝑜𝑜

𝐶𝐶𝐿𝐿 ≈
1

2𝜋𝜋𝑅𝑅𝑜𝑜(10 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)
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Compensation – 1 41

𝑓𝑓𝑧𝑧 =
1

2𝜋𝜋𝐶𝐶𝐿𝐿𝑅𝑅𝑐𝑐
𝑓𝑓𝑝𝑝 ≈

1
2𝜋𝜋𝐶𝐶𝐿𝐿(𝑅𝑅𝑐𝑐 + 𝑅𝑅𝑜𝑜)

If 𝑅𝑅1 + 𝑅𝑅2 ≫ 𝑅𝑅𝑜𝑜

𝐶𝐶𝐿𝐿

‒

+

𝑅𝑅1
𝑅𝑅2
𝑅𝑅𝑜𝑜 𝑅𝑅𝐶𝐶
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• Frequency response of feedback amplifiers
• Stability of feedback amplifiers
• Compensation
• Appendix

Outline 42
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Compensation – 2 43

𝐶𝐶𝐿𝐿

‒

+

𝑅𝑅1
𝑅𝑅2

𝑅𝑅𝑜𝑜 𝑅𝑅𝐶𝐶
𝐶𝐶𝑐𝑐

See [2] for details
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1. https://www.ti.com/lit/pdf/snoa486
2. https://www.analog.com/media/en/analog-dialogue/volume-

38/number-2/articles/techniques-to-avoid-instability-capacitive-
loading.pdf
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