

Electronics – 96032

OpAmp Circuit Stability and Compensation

Alessandro Spinelli Phone: (02 2399) 4001 alessandro.spinelli@polimi.it

spinelli.faculty.polimi.it

Slides are supplementary material and are NOT a replacement for textbooks and/or lecture notes

Acquisition chain

Purpose of the lesson

- We begin our study with the analysis and design of simple amplifiers
- Next lessons will deal with
 - Basic amplifier principles and the feedback amplifier concept
 - Linear applications of OpAmps
 - Feedback amplifier properties
 - Stability of feedback amplifiers (this lesson)
 - Instrumentation amplifiers and OpAmp parameters

- Frequency response of feedback amplifiers
- Stability of feedback amplifiers
- Compensation
- Appendix

OA parameter: gain-bandwidth product

• Open-loop gain can usually be expressed as

$$A(s) = \frac{A_0}{1 + s\tau}$$

• *GBWP* is the unity-gain frequency

$$GBWP = \frac{A_0}{2\pi\tau}$$

Actual values from datasheets

Actual values from datasheets

Dependent on V_{cc} , R_L , T,...

Frequency response

$$G = \frac{G_{OL}(s)}{1 - G_{loop}(s)} = \frac{G_{id}(s)}{1 - 1/G_{loop}(s)} \approx \frac{G_{id} \forall |G_{loop}| \gg 1}{G_{OL} \forall |G_{loop}| \ll 1}$$

where

$$G_{loop}(s) = -\frac{G_{OL}(s)}{G_{id}(s)} \Rightarrow \left|G_{loop}(s)\right|_{dB} = |G_{OL}(s)|_{dB} - |G_{id}(s)|_{dB}$$

10

POLITECNICO DI MILANO

Example: single-pole amplifier

Analytical solution

$$G = \frac{G_{id}}{1 - \frac{1}{G_{loop}(s)}} = \frac{G_{id}}{1 + \frac{R_1 + R_2}{A(s)R_1}}$$

$$\frac{(R_1 + R_2)(1 + s\tau)}{A_0 R_1} = -1 \xrightarrow{\text{Open-loop}}_{\text{pole}}$$

$$s = -\frac{1}{\tau} \left(1 + \frac{A_0 R_1}{R_1 + R_2} \right) = -\frac{1}{\tau} \left(1 - G_{loop}(0) \right) \Rightarrow f_p \approx \frac{A_0}{2\pi\tau} \frac{R_1}{R_1 + R_2}$$

Gain-bandwidth product

• For a non-inverting amplifier we have

$$f_p \approx \frac{A_0}{2\pi\tau} \frac{1}{G_{id}} \Rightarrow f_p G_{id} = \frac{A_0}{2\pi\tau} = GBWP$$

• In an inverting configuration we should write f(D + D)(D - f(1 + |C|)) = CI

 $f_p(R_1 + R_2)/R_1 = f_p(1 + |G_{id}|) = GBWP,$

which becomes the same for high gains

• The feedback loop reduces the (open-loop) gain by $1 - G_{loop}(0)$ and widens the bandwidth by the same factor

- Frequency response of feedback amplifiers
- Stability of feedback amplifiers
- Compensation
- Appendix

Stability of feedback systems

- Stability only depends on G_{loop}
- The critical condition is $G_{loop} = 1$, *i.e.*, $-G_{loop} = -1$

Bode stability criterion (1945)

• If

- $G_{loop}(s)$ only has poles in LHP (or in s = 0)
- There is only one critical frequency f_{0dB} where the magnitude of $-G_{loop}$ is 0 dB

•
$$\measuredangle \left(-G_{loop}(f_{0dB})\right) > -180^{\circ}$$

• Then, the system is stable

Phase margin

- In real systems, the phase can change because of tolerances and parameter drift
- The phase margin represents how much increase in phase lag the system can withstand before becoming unstable

$$\varphi_m = 180 + \measuredangle \left(-G_{loop}(f_{0dB}) \right)$$

An alternative definition

• If

- $G_{loop}(s)$ only has poles in LHP (or in s = 0)
- There is only one frequency f₁₈₀ where the phase of -G_{loop} is -180° (± multiples of 360°)
- $|G_{loop}(f_{180})| < 1$
- Then, the system is stable

- In real systems, the gain changes because of tolerances and drift
- The gain margin represents how much increase in gain the system can withstand before becoming unstable

$$G_m \Big|_{dB} = - \big| G_{loop}(f_{180}) \big|_{dB} \Rightarrow$$
$$G_m = \frac{1}{\big| G_{loop}(f_{180}) \big|}$$

Alessandro Spinelli – Electronics 96032

How much phase margin?

- Frequency response of feedback amplifiers
- Stability of feedback amplifiers
- Compensation
- Appendix

23

Frequency compensation of OpAmps

- Is the tailoring of $G_{loop}(s)$ in order to improve the circuit stability
- Most OAs are «internally compensated» to ease their use with resistive feedback, and have a single pole above 0dB
- For frequency-dependent feedback, stability must be checked and compensation applied (if needed)

Dominant pole compensation

- Used in OA internal compensation
- Put (usually) a large capacitor at the output of the OA
- Big reduction of bandwidth
- \Rightarrow use only if no other

option is available

Gain compensation

- Reduces G_{loop} until sufficient phase margin is achieved
- Useful in uncompensated versions of OAs
- Bandwidth and static precision are reduced ⇒ this solution should also be avoided

25

Example: un(or de)compensated OAs

Alessandro Spinelli – Electronics 96032

• As

 $\begin{aligned} \left|G_{loop}\right|_{dB} &= |G_{OL}|_{dB} - |G_{id}|_{dB}, \\ \text{reduction of } |G_{loop}| \text{ can be} \\ \text{obtained by increasing } |G_{id}| \end{aligned}$

 Circuit becomes more stable as gain is increased

See [1] for details

26

Lead compensation $(f_z < f_p)$

Resulting loop gain

- The closed-loop gain contains a pole at $f_z \Rightarrow$ there is a trade-off between phase margin and bandwidth
- If f_z is lowered too much to increase the phase margin (e.g, $f_z \le f_{p2}$), high-frequency poles of A(s) must also be considered \Rightarrow increasing f_{0dB} beyond GBWP is not a good idea!

Example: input capacitance

Compensation of input capacitance

31

Resulting loop gain

- C_c modifies the closed-loop gain \Rightarrow stability is traded off against bandwidth (now given by f_z)
- Another possibility is $C_c R_2 = C_i R_1$ (pole-zero cancellation), but keep in mind that C_i is never constant in reality...
- In differential amplifiers, use symmetric compensation

Lag network $(f_p < f_z)$

Z does not affect G_{id} , but can degrade Z_{in} in NI amplifiers

Example: differentiator

A small resistor R_c between the OA inputs can reduce G_{loop} and provide compensation. However, reducing G_{loop} is usually not a good solution...

Alternative compensation scheme

$$G_{loop} = -A(s) \frac{1 + sCR_c}{1 + s(CR_c + CR + C_iR) + s^2CC_iRR_c}$$

POLITECNICO DI MILANO

- For frequencies much smaller than its pole/zero, a capacitor can be regarded as an open circuit
- For frequencies much larger than its pole/zero, a capacitor can be regarded as a short-circuit
- Pole/zero frequencies are inversely proportional to the capacitance value
 - C will give LF pole/zero $\Rightarrow C_i$ behaves as an open circuit
 - C_i will give HF pole/zero $\Rightarrow C$ behaves as a short-circuit

Resulting schemes

Poles and zeros

$$\begin{aligned} \text{LF:} \ f_z &= \frac{1}{2\pi CR_c} \quad f_{p1} \approx \frac{1}{2\pi C(R_c + R)} \\ \text{HF:} & f_{p2} \approx \frac{1}{2\pi C_i(R_c \| R)} \end{aligned}$$

- f_{p2} is usually at high frequency and can be neglected
- Lag network ($f_{p1} < f_z$) can be used for compensation
- Closed-loop gain bandwidth limited to $\frac{1}{2\pi R_c C}$

Capacitive load

Additional pole in G_{loop} must be above GBWP (say, 10 GBWP) \Rightarrow rough (and conservative) estimate of maximum load capacitance is $C_L \approx \frac{1}{2\pi R_o (10 \ GBWP)}$

Compensation – 1

41

POLITECNICO DI MILANO

- Frequency response of feedback amplifiers
- Stability of feedback amplifiers
- Compensation
- Appendix

Compensation – 2

See [2] for details

Alessandro Spinelli – Electronics 96032

- 1. https://www.ti.com/lit/pdf/snoa486
- https://www.analog.com/media/en/analog-dialogue/volume-38/number-2/articles/techniques-to-avoid-instability-capacitiveloading.pdf