

V POLITECNICO DI MILANO

Electronics – 96032

Wheatstone Bridge

Alessandro Spinelli Phone: (02 2399) 4001 alessandro.spinelli@polimi.it

spinelli.faculty.polimi.it

Slides are supplementary material and are NOT a replacement for textbooks and/or lecture notes

Acquisition chain

next lessons

Alessandro Spinelli – Electronics 96032

3

Purpose of the lesson

- At this point, we know how to analyze and design simple amplifiers
- Effective amplifier design depend upon the input signal characteristics (impedance, bandwidth,...)
- In this part of the class we discuss the Wheatstone bridge arrangement

- Wheatstone bridge and sensitivity
- Effect of wire resistance
- Temperature compensation

- Resistors whose value changes with variation in a physical quantity *S* (light, heat, stress,...)
- Among the most common in instrumentation
- For small changes in *S*, a linear approximation holds:

$$R = R_0(1 + \alpha \Delta S) = R_0(1 + x)$$

where
$$\alpha = \frac{1}{R_0} \left. \frac{dR}{dS} \right|_{R_0}$$

• Temperature sensors

$$\alpha = TCR = \frac{1}{R_0} \frac{\Delta R}{\Delta T}$$

• Deformation sensors

$$\alpha = GF = \frac{1}{R_0} \frac{\Delta R}{\varepsilon} \qquad \left(\varepsilon = \frac{\Delta L}{L} = \text{strain}\right)$$

Single-ended measurements

- Noise and fluctuations in ground potential and R₀
 degrade performance
- Can be used for high-level signals, low noise, short distance environments

 $V_s = IR_0 + IR_0x + \Delta V_G + I\Delta R_0 + I\Delta R_0x$ Offset + Signal + Disturbs

Wheatstone bridge

Insensitive to ground potential and resistance fluctuations

Bridge balancing

• We set $V_s = 0$ for x = 0:

$$\left(\frac{1}{1+R_3/R_4} - \frac{1}{1+R_1/R_2}\right) = 0 \Rightarrow \frac{R_1}{R_2} = \frac{R_3}{R_4} = k$$

• We pick k by requiring maximum V_s sensitivity to resistance variation:

$$\frac{dV_s}{dR_1} = \frac{V_{cc}}{\left(1 + \frac{R_1}{R_2}\right)^2} \frac{1}{R_2} = \frac{V_{cc}}{R_1} \frac{k}{(1+k)^2}$$

Bridge sensitivity to k

Let's assume
$$R_1 = R_2 = R_3 = R$$
; $R_4 = R(1 + x)$. We have:

$$V_{s} = V_{cc} \left(\frac{R(1+x)}{R(2+x)} - \frac{1}{2} \right) = V_{cc} \frac{x}{2(2+x)} \approx V_{cc} \frac{x}{4}$$

• The non-linearity relative error is

$$\varepsilon_{NL} = \left| \frac{x}{4} \frac{2(2+x)}{x} - 1 \right| = \frac{|x|}{2}$$

• With $V_{cc} = 5$ V and $x^{max} = 1\%$ (large!), we have

$$V_s^{max} = V_{cc} \frac{x^{max}}{4} = 12.5 \text{ mV}$$
 ($\approx 12.44 \text{ mV}$ in reality)

• The non–linearity error is $\varepsilon_{NL} = \frac{x}{2} = 0.5\%$

• V_{cc} usually cannot be increased (compatibility with other blocks and power dissipation issues) \Rightarrow The output is a small signal!

Double sensitivity

Maximum sensitivity

- Sensitivity: voltage output when $V_{cc} = 1$ V and $x = x^{max}$. Usually expressed in mV/V (in previous example, S = 2.5 mV/V)
- Accuracy: difference with respect to the linear characteristics.
 Expressed in %
- Resistance: resistance of the bridge measured between the output terminals

Bridge amplifiers

Amplifier requirements (example)

- High gain
 - $V_{cc} = 5 \text{ V}, x^{max} = 1\% \Rightarrow V_s^{max} = 12.5 \text{ mV}. \text{ If } V_o^{max} = V_{cc} = 5 \text{ V} \Rightarrow G = 400$
- High input resistance
 - $R = 100 \Omega$ and an error smaller than 1‰ is required \Rightarrow
 - $R_i \geq 1000R = 100 \text{ k}\Omega$
- High CMRR
 - with 8-bit resolution, $V_s^{LSB} = 12.5 \text{ mV}/2^8 \approx 50 \text{ }\mu\text{V}$ and $V_{CM} = 2.5 \text{ V} \Rightarrow$ $\text{CMRR} \ge V_{CM}/V_{s,LSB} = 94 \text{ dB}$

- Wheatstone bridge and sensitivity
- Effect of wire resistance
- Temperature compensation

19

Wiring resistance in remote sensor

- In remotely located bridges, cable resistances and noise pickup are the biggest problems
- Cable resistances give an offest error (which can be compensated), but...
- Changes in cable resistances during operation (*e.g.*, with temperature) produce an error signal (gain error) at the bridge output

2-wire connection

21

- Consider $V_{cc} = 10 \text{ V}, R = 350 \Omega, x^{max} = 1\%$ $V_0(0) = 0 \text{ and } V_0(x^{max}) = 24.9 \text{ mV}$
- With $R_L = 10 \Omega$ we have:

$$V_o(0) = 10 \left(\frac{370}{720} - \frac{1}{2} \right) = 138.9 \text{ mV}$$
$$\Delta V = 23.5 \text{ mV}$$
$$V_o(x^{max}) = 10 \left(\frac{370 + 3.5}{720 + 3.5} - \frac{1}{2} \right) = 162.4 \text{ mV}$$

What if we compensate?

Adding $2R_L$ in series to the lower-left bridge resistor leads to

$$V_o(0) = 0;$$
 $V_o(x^{max}) = 10\left(\frac{370 + 3.5}{720 + 3.5} - \frac{370}{720}\right) = 23.52 \text{ mV}$

• The problem now is the temperature dependence of R_L , expressed by its temperature coefficient

$$TCR = \frac{1}{R} \frac{dR}{dT}$$

• With TCR = 0.385% /°C and $\Delta T_{max} = 10$ °C $\Rightarrow 2\Delta R_L = 0.77 \Omega$

$$V_o(0) = 10 \left(\frac{370 + 0.77}{720 + 0.77} - \frac{370}{720} \right) = 5.19 \text{ mV}$$
$$\Delta V = 23.47 \text{ mV}$$
$$V_o(x^{max}) = 10 \left(\frac{370 + 3.5 + 0.77}{720 + 3.5 + 0.77} - \frac{370}{720} \right) = 28.66 \text{ mV}$$

3-wire connection

3-wire connection

• When $\Delta T = 0$ we have

$$V_o(0) = 0; \quad V_o(x^{max}) = 10\left(\frac{360 + 3.5}{720 + 3.5} - \frac{1}{2}\right) = 24.19 \text{ mV}$$

• When temperature is accounted for, we have $V_o(0) = 0$ and

$$V_o(x^{max}) = 10\left(\frac{360 + 3.5 + 0.385}{720 + 3.5 + 0.77} - \frac{1}{2}\right) = 24.16 \text{ mV}$$

Kelvin (4-wire) connection

POLITECNICO DI MILANO

- The 3-wire method works well for remote elements several tens of meters away
- Connecting wires must have the same characteristics
- Stability of V_{cc} remains a concern
- The 4-wire connection is required for remote bridges, e.g. with 4 active elements
- The Kelvin connection is actually a six-lead assembly. Constantcurrent excitation can reduce it to 4

- Wheatstone bridge and sensitivity
- Effect of wire resistance
- Temperature compensation

Temperature dependence

• The bridge output is

$$V_{s} = V_{cc}x = V_{cc}\alpha\Delta S$$
$$\alpha = \frac{1}{R_{0}} \frac{dR}{dS}\Big|_{R_{0}}$$

• In reality, $\alpha = \alpha(T)$, which introduces inaccuracies in the output (unless we are measuring the temperature)

Solution Temperature compensation

$$\frac{dV_s}{dT} = \Delta S \left(\alpha \frac{dV_{cc}}{dT} + V_{cc} \frac{d\alpha}{dT} \right) = 0$$
$$\Rightarrow \frac{1}{V_{cc}} \frac{dV_{cc}}{dT} = -\frac{1}{\alpha} \frac{d\alpha}{dT} = -\beta$$

The bridge excitation voltage must be temperature-dependent and have an opposite rate of variation with respect to α

T-independent resistor in series

$$V_{cc}' = V_{cc}' \frac{R_B}{R_B + R_T}$$

$$V_{cc} = V_{cc}' \frac{R_B}{R_B + R_T}$$

$$\frac{dV_{cc}}{dT} = V_{cc}' \frac{R_T}{(R_B + R_T)^2} \frac{dR_B}{dT}$$

$$\frac{1}{V_{cc}} \frac{dV_{cc}}{dT} = \frac{R_T}{R_B + R_T} \frac{1}{R_B} \frac{dR_B}{dT}$$

$$= -\beta$$

$$-\beta = TCR \frac{R_T}{R_B + R_T}$$
(for a bridge with equal resistances)

Alessandro Spinelli – Electronics 96032

$$R_T = -\frac{\beta}{\beta + TCR}R$$

- Very simple and popular solution, but with a few disadvantages:
 - Only possible if $\beta < 0$ and $TCR > |\beta|$
 - β and *TCR* must be precisely known
 - Output signal is reduced
- Usually adopted in the range $25 \pm 15^{\circ}$ C