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Noise in Linear Time-Variant (LTV) systems

Dealing with noise in OA circuits we exploited the theory on Linear Time-Invariant (LTI) systems to under-

stand how noise is transferred from the input to the output of an OA stage. Nevertheless, such theory is not

able to properly handle the variety of �lters which may come in handy during the stage of signal conditioning.

For such a reason, a more general theory can be derived for Linear Time-Variant (LTV) systems, i.e. systems

which have a non-stationary response in time.

In most of the situations it is better to work in the time-domain to solve exercises with LTV systems.

Similarly to LTI, LTV systems can be described through a function, called wighting function w(t, τ). The

weighting function corresponds to the system response to a pulse centered at time τ at the instant t (note
that, from this de�nition, w(t, τ) = 0 if t < τ). Exploiting this function, the output of a LTV system subject

to the input signal x(t) can be written as:

y(t) =

∫
x(τ) · w(t, τ) · dτ (1)

Let's now understand how noise is transferred through these kind of systems. For a general non-stationary

random process at the input of the system, it is possible to de�ne it's autocorrelation, which will depend

on both instants at which it is evaluated, as Rxx(t1, t2). The output noise will be characterized by a non-

stationary autocorrelation given by:

Ryy(t1, t2) =

∫∫
Rxx(α, β) · w(t1, α) · w(t2, β) · dαdβ (2)

While the rms value of the noise can be evaluated simply by taking t1 = t2 = t in equation (2), obtaining:

ny(t)2 = Ryy(t, t) =

∫∫
Rxx(α, β) · w(t, α) · w(t, β) · dαdβ (3)

Which clearly shows that the output rms noise will be non-stationary. This last property is caused by

the time-variant nature of the �lter. Indeed, if we consider a stationary random process, for which the

autocorrelation depends only on the reciprocal time di�erence between the instants at which we compute it,

we obtain:

Ryy(t1, t2) =

∫∫
Rxx(β − α) · w(t1, α) · w(t2, β) · dαdβ =

∫
Rxx(γ)

∫
w(t1, α) · w(t2, α+ γ) · dαdγ (4)

Assuming then to evaluate the output rms noise, equation (4) becomes:

ny(t)2 = Ryy(t, t) =

∫
Rxx(γ)

∫
w(t, α) · w(t, α+ γ) · dαdγ =

∫
Rxx(γ) · kwtt(γ) · dγ (5)

Where we de�ned kwtt(τ) the weighting function time-correlation.

Exploiting the properties of Fourier transforms (in particular, Parseval's theorem), it is possible to work out

equivalent expressions in the frequency domain (transforming with respect to the time variable τ).
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Low Pass Filter (LPF)

Low pass �lters are typically LTI systems which can help in conditioning low frequency signals subjected

to high-frequency noise. A classic application is the one of processing constant signals with a superimposed

white noise. In general, the transfer function of a low-pass �lter can be written as:

H(f) =
1

1 + sTF
(6)

With an associated impulse-response given by:

h(t) =
1

TF
e−t/TF u(t) (7)

Note that, as LPFs are LTI systems, the weighting function w(t, τ) is nothing more than the pulse-response

shifted and reversed h(τ − t). If we assume that the input noise is stationary, we can proceed to calculate

the output noise autocorrelation as:

Ryy(τ) = Rxx(τ) ∗ khh(τ) = Rxx(τ) ∗
∫

h(t) · h(t+ τ) · dt (8)

Where the time-correlation of the weighting function khh(τ) assumes the expression of:

khh(τ) =
1

2TF
e−|τ |/TF (9)

Let's now consider the speci�c case of white noise, with an input autocorrelation given by Rxx(τ) = λ · δ(τ).
Then, the output rms noise is easily evaluated as:

n2
y = Ryy(0) =

[
λ · δ(τ) ∗ 1

2TF
e−|τ |/TF

]
τ=0

=
λ

2TF
(10)

Note that the longer is TF the smaller are the output �uctuations. This is easy to understand, as a larger

TF results is a longer averaging operation. The longer the averaging is conducted, the more the output of

the random process will converge to its mean value, which is zero. This could have been understood also

from the frequency-domain perspective, given the bilater PSD of white noise Sx(f) = λ. Indeed, the output
rms noise can be written as:

n2
y =

∫
λ · |H(f)|2 =

∫
λ · 1

1 + (2πfTF )2
· df =

λ

2πTF

∫
1

1 + x2
· dx =

λ

2TF
(11)

From the equivalent rectangle approximation, we observe that the white noise equivalent bandwidth of LPF

is given by 1/4TF , to be compared with the signal bandwidth, given by 1/2πTF . Note that the bandwidth

of the noise is larger than the one of the signal by a term π/2 (BWn = π/2BWs).

To check the noise conditioning capability of the LPF we can test how it works when the input signal

is a step at t = 0, i.e. x(t) = Au(t). The output signal will be:

y(t) =

∫
Au(τ) · 1

TF
e−(t−τ)/TF · dτ = A(1− e−t/TF ) (12)

Assuming that we evaluate the output when the exponential transient has vanished, we obtain an output

signal-to-noise ratio:

(S/N)y =
A√
λ

√
2TF (13)

To compare it with the input (S/N) we need to consider a quasi-white noise with equivalent bandwidth

fn = 1/2Tn (TF ≫ Tn), that leads to:

(S/N)x =
A√
λ

√
Tn (14)

Eventually, we observe that after the LPF the signal-to-noise ratio is increased by a factor
√

2TF
Tn

.
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Gated Integrator (GI)

The gated integrator (GI) is a simple example of LTV system which can be used to condition fast signals

(pulses) with superimposed high-frequency noise (white). Figure 1 reports a simple implementation.

Input
S1

Output

S2
Trigger

Buffer stage

Integrator stage

Figure 1: An example of gated integrator implementation.

The working principle is that the signal (eventually bu�ered) is integrated on a �nite time window, which

is de�ned by the control trigger signal. Indeed, the trigger switches S1 and S2 in a way that only one of

them is closed at the same time. When S1 is closed (and S2 is open), the bu�ered signal is integrated at

the output, while when S1 is open (and S2 is closed), the feedback capacitor is discharged and the output is

forced to GND.

Let's assume that the GI is programmed to open a single integration window in the time interval [0, t]. Then
the weighting function can be easily obtained from the following reasoning: if a pulse arrives at τ < 0 or at

τ > t the integration window will be closed, thus the output at any time will be zero. Instead, if a pulse

arrives during the integration window, i.e. 0 < τ < t, the signal will be integrated to the output. As we

know that the integral of the pulse is the step function, we immediately get that at any reading time such

pulse will result in a constant signal equal to the gain K of the GI. Eventually we obtain:

w(t, τ) = K(u(τ)− u(τ − t)) (15)

For any generic input signal x(t) we get at the output a signal given by:

y(t) =

∫
x(τ) · w(t, τ) · dτ = K

∫ t

0

t

t
x(τ) · dτ = Kt⟨x(t)⟩ (16)

Indeed, the output signal is proportional to the time average of the input signal during the integration

window.

Assuming now to have an input white noise of autocorrelation Rxx(τ) = λ · δ(τ) we can calculate how it is

transferred to the output by �rst computing the weighting function time-correlation kwtt(τ):

kwtt(τ) =


0 if |τ | > t

K2(t+ τ) if − t < τ < 0

K2(t− τ) if 0 < τ < t

(17)

Then, the output rms noise is obtained as:

n2
y =

∫
λ · δ(γ) · kwtt(γ) · dγ = λK2t (18)

The GI equivalent noise bandwidth is thus given by 1/2t. To compute the (S/N) let's assume to have a

constant input signal of amplitude A during the integration window (so that the output is KAt), obtaining:

(S/N)y =
A√
λ

√
t (19)

Considering the quasi-white noise at the input (with bandwidth given by fn = 1/2Tn), we get:

(S/N)y = (S/N)x ·
√

t

Tn
(20)
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Boxcar Averager (BA)

The boxcar averager is an LTV system which �nd applications in the conditioning of repetitive fast signals

(pulses) with superimposed high-frequency noise (white) or in cases where noise is slightly correlated. Figure

2 reports a simple implementation.

Output
Input

S1

Trigger

Buffer stage
Buffer stage

LPF

Figure 2: An example of boxcar averager implementation.

The �lter works as a LPF when the trigger closes the switch S1. Instead, when S1 is open the capacitor has

no way of discharging and the output signal is kept constant at the capacitor voltage. The trigger signal is

usually a square wave that keeps S1 open for a period TO and closed for a period TC . The weighting function

can be shown to be the one reported in Figure 3

Figure 3: (Top) weighting function of the BA. (Bottom) Equivalent-time weighting function of the BA.

From the standpoint of the equivalent time τ ′ the weighting function is the same as the one of a LPF, so

that we can exploit some known results. In particular, the output rms noise, assuming an input white noise,

is given by n2
y = λ/(2TF ), as for a LPF. Assuming an input signal of amplitude A, which is constant during

the �ltering phases we obtain that the output is exactly equal to A and the (S/N)y is, once again, the one

of a LPF. If the signal (of amplitude A) is su�ciently stable over a single �ltering window, we can de�ne the

single-pulse quantities:

ysp(t) = A

∫ t

t−TC

1

TF
e
− t−τ

TF · dτ = A

∫ 0

−TC

1

TF
e
− γ

TF · dγ = A

(
1− e

−TC
TF

)
(21)

n2
y,sp = λkwtt(0) = λ

∫ t

t−TC

w(t, τ)2dτ = λ

∫ t

t−TC

1

T 2
F

e
− 2(t−τ)

TF dτ =
λ

2TF

(
1− e

− 2TC
TF

)
(22)

From which it is possible to observe that the signal-to-noise ratio can assume the expression:

(S/N)y =
A√
λ

√
2TF = (S/N)y,sp

√
1− e

− 2TC
TF

1− e
TC
TF

= (S/N)y,sp
√
Neq (23)

Where we de�ned the equivalent number of pulses Neq to be:

Neq =
1− e

− 2TC
TF(

1− e
TC
TF

)2 =
1 + e

−TC
TF

1− e
TC
TF

≈ 2
TF

TC
(24)

Where the last approximation holds if TF ≫ TC .
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Ratemeter integrator (RI)

The ratemeter integrator (RI) is a �lter conceptually similar to the boxcar averager. Figure 4 reports a

simple implementation.

Input
OutputS1

Trigger

Buffer stage
Buffer stage

LPF

Figure 4: An example of ratemeter integrator implementation.

Similarly to the BA, the �lter works with a single switch S1. When the switch is closed the input signal is

trasferred to a bu�er, thus being �ltered through a LPF. Contrary to the BA, however, when the switch is

open the LPF capacitor is free to discharge on it's series resistance directly through the output of the �rst

stage. The weighting function is shown in Figure 5.

Figure 5: Weighting function of the ratemeter integrator.

To evaluate the performance of the �lter we can check how it behaves when fed with a constant signal (or

a train of pulses synchronized with the trigger) of amplitude A with some white noise superimposed. The

output signal can be computed by summing the contribution of each pulse yn(t) (assuming t = 0):

yn(t) = A

∫ −n(TC+TO)

−n(TC+TO)−TC

eτ/TF

TF
dτ = A

(
1− e

−TC
TF

)
e
−n

TC+TO
TF (25)

y(t) =

∞∑
0

yn(t) = A
(
1− e−TC/TF

) ∞∑
0

e
−n

TC+TO
TF = A

1− e
−TC

TF

1− e
−TC+TO

TF

(26)

For what concern the noise, we obtain:

knwtt
(0) =

∫ −n(TC+TO)

−n(TC+TO)−TC

e2τ/TF

T 2
F

dτ =
1− e

−2
TC
TF

2TF
e
−2n

TC+TO
TF (27)

kwtt(0) =

∞∑
0

knwtt
(0) =

1

2TF

1− e
−2

TC
TF

1− e
−2

TC+TO
TF

(28)

The resulting (S/N)y is then:

(S/N)y =
A√
λ

√
TF · 1− e

−TC
TF√

1− e
−2

TC
TF

·

√
1− e

−2
TC+TO

TF

1− e
−TC+TO

TF

= (S/N)BA
sp ·

√
Neq (29)
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Where we recognized the expression of the (S/N) of the single-pulse BA multiplied by a term associated to

the equivalent number of pulses Neq, which in this case can be expressed as:

Neq =
1− e

−2
TC+TO

TF(
1− e

−TC+TO
TF

)2 =
1 + e

−TC+TO
TF

1− e
−TC+TO

TF

≈ 2TF

TC + TO
(30)

Where the last approximation holds if TF ≫ TC + TO

List of relevant exams

The following exams contain questions related to the �lters studied in this tutorage:

� Exam of 10th July 2015, exercise 2

� Exam of 25th September 2015, exercise 2

� Exam of 4th July 2016, exercise 2

� Exam of 21th July 2016, exercise 2

� Exam of 15th February 2017, exercise 2

� Exam of 6th July 2017, exercise 2

� Exam of 20th July 2017, exercise 2

� Exam of 21st February 2018, exercise 2

� Exam of 21st June 2018, exercise 2

� Exam of 20th July 2018, exercise 2

� Exam of 13th February 2019, exercise 2

� Exam of 13th February 2020, exercise 2

� Exam of 18st June 2020, exercise 2

� Exam of 11th September 2020, exercise 2

� Exam of 18th February 2021, exercise 2

� Exam of 23rd June 2021, exercise 2

� Exam of 21st January 2022, exercise 2

� Exam of 18th February 2022, exercise 2

� Exam of 21st July 2022, exercise 2

� Exam of 20th January 2023, exercise 2

� Exam of 19th July 2023, exercise 2

� Exam of 6th September 2023, exercise 2

� Exam of 7th February 2024, exercise 2

� Exam of 20th January 2025, exercise 2

� Exam of 14th February 2025, exercise 2
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