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High-pass �lters (HPF)

High-pass �lter are LTI �lters which can be described in terms of a general transfer function H(s) given by:

H(s) =
sTf

1 + sTF
(1)

In their simplest implementation they are the reciprical of a low-pass �lter, i.e. made up by the series of a

capacitor C and a resistor R, where the signal is applied to one of the capacitor ends and the output is taken

across the resistor. In that situation, the �lter time constant TF is simply given by the product CR.
From a time-domain perspective, the �lter can be described in terms of it's pulse response h(t), given by:

h(t) = δ(t)− 1

TF
e
− t

TF u(t) (2)

It is worth noticing that the integral of the pulse response is identically equal to zero. This property can be

inferred also recalling the initial value theorem and observing that the transfer function has a zero at 0Hz.
From the theory, we know that the weighting function of an LTI system is the pulse response shifted and

reversed, i.e. w(t, τ) = h(τ − t), from which we can calculate the time-correlation of the weighting function

(which will be equal to the auto-correlation of the pulse response):

Khh(τ) = δ(t)− 1

2TF
e
− |t|

TF (3)

Let's now exploit this last result to understand how noise can be a�ected by the HPF. Let's assume in general

that we are given a noise input auto-correlation Rxx(τ) = n2
x · ρ(τ), where ρ(τ) is by de�nition a normalized

auto-correlation such that ρ(0) = 1 and ρ(|τ | > 0) ≤ 1. Then:

n2
y = n2

x

(
1−

∫
ρ(τ)

2TF
e
− |t|

TF dτ

)
(4)

As the integral of the exponential contribution of the HPF khh is equal to one, we can understand that a large
noise cancellation can be achieved if we are dealing with a noise that has a large time correlation compared

to TF . Indeed, if the input noise auto-correlation decays within a certain time TN such that TN ≫ TF ,

we can assume ρ(τ) to be almost constant and equal to 1 in our integral, thus obtaining a complete noise

removal. This is what would have happened if the noise was a static baseline: due to the �lter zero at 0Hz,
the baseline would have been completely removed!

This example highlights the capability of HPFs to remove low-frequency noise. Clearly, it has to be used

cautiously, depending on the signal we want to read. Indeed, if the signal is mainly a low-frequency signal

submerged in low-frequency noise, the adoption of a HPF is not ideal and better choices could be made. For

this reason, let's now study how a square pulse of amplitude A and duration T , which is our prototypical

high-frequency signal, is passed through a HPF. Let's start with out input signal, which is denoted as

x(t) = A · RectT (t). During the ramp-up front, the �lter output will be given by its step response, i.e.

y(t) = Ae
− t

TF u(t). Once the falling edge is reached, then, the �lter output results in:

y(t) = Ae
− t

TF u(t)−Ae
− t−T

TF u(t− T ) (5)

It is easy to verify that the time-integral of y(t) is equal to zero, due to the transfer function zero in the

origin. Moreover, we can immediately observe that the output is characterized by a response with a long

negative tail. If we have a single pulse at the input, or multiple pulses distanced by a su�cient time, this will

not be a problem. Otherwise, if the pulse repetition rate is high, we may end up facing pile-up problems,

i.e. the new pulse is processed while the previous pulse output has not vanished yet.
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Baseline restorers (BR)

The baseline restorer (BR) is a LTV �lter that, similar to the HPF, can be successfully employed when a

high-frequency signal has superimposed a low-frequency noise. The simplest implementation is the one of

a HPF with a switch between the resistor and GND, as shown in Fig. 1(left). The weighting function can

be easily determined observing that, if the switch is open, any delta function applied to the input will be

passed to the output immediately (the capacitor can be assumed as a short-circuit). When the switch is

closed, instead, the weighting function has the shape of a negative exponential (you can easily realise this by

writing the output as the di�erence between the input and the voltage drop on the capacitor). Fig. 1(right)

shows the weighting function of the BR.

Figure 1: (Left) A simple implementation of a baseline restorer with a CR network and a switch. (Right)

The baseline restorer weighting function.

To understand how noise is a�ected by the BR, it is necessary to calculate the time-correlation of the

weighting function. The calculations are easy, but it is more interesting to represent it graphically in two

conditions, i.e. when TF ≫ t0 and when t0 ≫ TF , being TF = RC and t0 the time di�erence between the

switch opening and the signal evaluation. Fig. 2 reports the weighting function time-correlation in these two

conditions.

Figure 2: Time-correlation of the BR weighting function in the cases in which (Left) TF ≫ t0 and (Right)

TF ≪ t0.

The important point here is that the �lter is able to correctly reduce the input noise if and only if the

noise correlation time TN is somehow larger that t0. This is intuitive: what's physically happening in the

�lter is that the noise alone is sampled when the switch is closed and the value is kept as a voltage drop on

the capacitor C. When the switch is opened and the measurement is taken, the net directly subtract the

previously integrated noise value from the sample. If the noise is correlated, i.e. if the time elapsed between

the switch opening and the sample is shorter than TN , we are e�ectively able to remove a certain noise

component. Otherwise, we are just summing uncorrelated noise, thus increasing the variance with respect

to a single signal+noise sample.
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List of relevant exams

� Exam of 3rd March 2016, exercise 2

� Exam of 21th July 2016, exercise 2

� Exam of 20th July 2017, exercise 2

� Exam of 19th July 2019, exercise 2

� Exam of 23rd June 2021, exercise 2

� Exam of 6th September 2023, exercise 2
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