
Electronics - Tutorage 7

David G. Refaldi, davidgianluigi.refaldi@polimi.it

26th May, 2025

Amplitude modulation (AM)

Amplitude modulation is a technique which is vastly adopted when dealing with low frequency signals with
superimposed low frequency noise. The typical case is the one of a constant or slowly variable signal buried
in �icker noise.
To understand how we can exploit amplitude modulation to achieve the goal of increasing the (S/N) in the
aforementioned situation we need to understand what's going on when we modulate a signal with another
one. Let's start, �rst of all, by de�ning the term modulation: we say that a certain signal x(t) is modulated
by the signal xM (t) when we generate the signal x(t) · xM (t). Note that, to perform such operation, a
multiplier (i.e. a non-linear element) is needed. The modulation operation can be seen also as enveloping
the low-frequency signal x(t) on a carrier reference signal xM (t). Typical reference signals are periodic at a
certain frequency fM . From Fourier analysis this means that it is possible to decompose them in terms of
sin(kωM t) and cos(kωM t). In that situation, moving to the frequency domain provides a more intuitive way
of understanding the modulation operation.
Indeed, let's consider now our modulated signal y(t) = x(t)xM (t), where xM (t) = Acos(ωM t). Moving to
the frequency domain we obtain:

Y (f) = X(f) ∗XM (f)

But the Fourier transform of a cosine (and similarly of a sine) is given by two delta functions of am-
plitude A/2 and centered at ±fM . The modulation operation can thus be interpreted as a spectral shift,
where the (bilateral) spectrum of the modulated signal is shifted such that there will be a replica of this
spectrum (properly multiplied by the weight of each delta function) centered at each harmonic composing
the modulation signal.

Figure 1: Graphic representation of the amplitude modulation operation both in the time (left) and in the
frequency (right) domain.
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Figure 1 illustrates what has been here described by showing the amplitude modulation operation on a
general low-frequency signal.

When we use the term demodulation, we refer, instead, to a similar operation, which is able to bring back the
spectrum into its original position around the frequency origin. To understand this, we can rely on the fact
that, if we multiply two cosine (or sine) functions, oscillating at frequencies ωM and ωDM , we obtain cosine
functions of frequencies ωM ± ωDM . Thus, by simply multiplying again the modulated signal with another
synchronous signal oscillating at the same frequency, we will be able to shift back the spectrum around the
origin (with a loss of amplitude). From a frequency standpoint, we can interpret the demodulation stage as
a further shift of the spectrum:

� modulating the spectrum we shifted it as to center it around the frequencies ±fM ;

� demodulating it we further provide a shift of ±fDM to each shifted replica;

If the modulation and demodulation frequencies are the same, two out of four replicas will be shifted back
in the origin.
What we said can be demonstrated to hold also for stochastic signals, as noise. However, in general one will
�nd that for the autocorrelation of the noise after the modulation stage it holds:

Ryy(τ) = Rxx(τ) ·KxMxM (τ)

Where with KxMxM (τ) we indicated the autocorrelation of the modulating signal. From a frequency
standpoint we can still interpret the modulation as a shift of the (bilateral) PSD. Indeed, if the modulation
signal is a pure harmonic (sine or cosine), the Fourier transform of its autocorrelation will still be a set of
two delta functions centered at ± the modulation frequency (weighting A2/4 each one).
The operations of modulation/demodulation of deterministic and stochastic signals will be the starting point
to understand the technique of synchronous detection exploited in lock-in ampli�ers.

Lock-in ampli�ers (LIA)

A lock-in ampli�er acts on signals buried in noise in the following way:

� Modulate the low frequency signal buried in low frequency noise at a high frequency, where noise is
much less. Note that this has to be done before the principal noise source

� Multiply the signal again, once noise has been summed, with a synchronous signal. This will modulate
the noise to higher frequencies but bring back a part of the signal to the original base-band

� Apply a low-pass �lter to remove the majority of modulated noise while maintaining the signal integrity

The basic idea is thus to exploit frequency shifting due to modulation as a way of separating the low-frequency
noise from the low-frequency signal. Let's now do the example in which both the modulation and the
demodulation signals are made of a cosine of frequency ωM with amplitude of A and B. Our signal constant
and of amplitude x while the noise has a bilateral PSD S(f). After the modulation stage the signal is now

xAcos(ωM t). After the demodulation stage the signal becomes, instead, xABcos2(ωM t) = xAB 1+cos(2ωM t)
2 .

We assume that our LPF bandwidth is smaller than 2fM such that only the constant component is left after
�ltering. Our noise PSD will be instead shifted in frequency as to be centered around ±fM . The two PSDs
are also multiplied by B2/4. When �ltered, the output rms noise will be:

n2
y =

B2

4
· (2BWn) · (S(fM ) + s(−fM )) = B2 ·BWn · S(fM )

Where we assumed the PSD to be almost constant on the LPF bandwidth and we recalled that the initial
PSD is an even function of f . The resulting signal to noise ratio then becomes:

(S/N) =
xAB
2√

B2 ·BWn · S(fM )
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If we assume the signal to be modulated and demodulated by the same reference (i.e. A = B), we obtain:

(S/N) =
xA√

4 ·BWn · S(fM )

In more complex situations where the modulation and demodulation signals are not simple trigonometric
functions we can still work out a general result by exploiting Fourier decomposition and adopting the intu-
itive approach of frequency shifting.

In general the signal at the end of the LIA stage can be computed following this procedure:

i Write the expression for the signal in the time domain as the product of the input signal x(t) times the
modulation and demodulation functions;

ii Exploit trigonometric expressions in order to write the signal as a sum of elements, each composed by
the product of x(t) times a sine/cosine function of given frequency (including f = 0Hz);

iii Keep only the term which enters the base band. Typically this is the term where x(t) is multiplied by a
constant.

Similarly, for the noise we can:

i Write down the weighting function wR(t) as the sum of sine/cosine terms of given frequencies, exploiting
trigonometric formulas to convert products of sine/cosine functions into sums;

ii Calculate the time correlation of the weighting function KwR,wR(τ). Recall that the time correlation of
a constant terms C1 is equal to C2

1 , while for a generic cosine function B cos(ωRt) the time correlation is
B2

2 cos(ωRτ);

iii Perform a Fourier transform on KwR,wR(τ), obtaining SKww(f). The convolution of SKww(f) with the
input noise PSD provides the output noise PSD. Note that the resulting convolution will be easy to
calculate, as each cosine term in KwR,wR(τ) will transform in a couple od Dirac's delta functions, e.g.,(
B2

2

)
cos(ωRτ) ⇐⇒ 1

2

(
B2

2

)
(δ(f − fR) + δ(f + fR));

iv Once the PSD at the input of the LIA's LPF is known, you can compute the output rms noise with the
typical method employed during the course, approximating the PSD to be constant over the �lter BW.

List of relevant exams

� Exam of 16th February 2015, exercise 2

� Exam of 10th July 2015, exercise 2

� Exam of 11th September 2015, exercise 2

� Exam of 5th September 2016, exercise 2

� Exam of 14th September 2017, exercise 2

� Exam of 10th September 2018, exercise 2

� Exam of 16th January 2020, exercise 2

� Exam of 17th July 2020, exercise 2

� Exam of 9th September 2021, exercise 2

� Exam of 8th September 2022, exercise 2

� Exam of 23rd June 2023, exercise 2
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